heatmap.qad {qad} | R Documentation |
Heatmap of dependence measures
Description
The pairwise computed dependence measures (output of the function pairwise.qad()
) are illustrated by a heatmap.
Usage
heatmap.qad(
pw_qad,
select = c("dependence", "max.dependence", "asymmetry"),
fontsize = 4,
significance = FALSE,
use_p.adjust = TRUE,
sign.level = 0.05,
scale = "abs",
color = "plasma",
white_font = 0.7,
rb_values = c(10, 0.315, 0.15),
title = ""
)
Arguments
pw_qad |
output of the function |
select |
a character indicating which dependence value is plotted. Options are c("dependence", "max.dependence", "asymmetry"). |
fontsize |
a numeric specifying the font size of the values. |
significance |
a logical indicating whether significant values with respect to the (adjusted) qad p.values are denoted by a star. |
use_p.adjust |
a logical indicating if the adjusted p.values are used (default = TRUE). |
sign.level |
numeric value indicating the significance level. |
scale |
character indicating whether the heatmap uses a relative or absolute scale. Options are 'rel' or 'abs' (default). |
color |
Select the color palette. Options are c("plasma" (default), "viridis", "inferno", "magma", "cividis", "rainbow"). |
white_font |
numeric between 0 and 1 denoting the start value for white text font (default = 0.7) |
rb_values |
a vector of size 3 with number of values, start value and end value in the rainbow colors space (if color = 'rainbow'). |
title |
The text for the title |
Details
If the output of pairwise.qad
() contains p-values, significant values can be highlighted by stars by setting significance=TRUE.
Value
a heatmap
Examples
n <- 100
x1 <- runif(n, 0, 1)
x2 <- x1^2 + rnorm(n, 0, 0.1)
x3 <- runif(n, 0, 1)
x4 <- x3 - x2 + rnorm(n, 0, 0.1)
sample_df <- data.frame(x1,x2,x3,x4)
#Fit qad
model <- pairwise.qad(sample_df, p.value = FALSE)
heatmap.qad(model, select = "dependence", fontsize = 6)