| qMRI-package {qMRI} | R Documentation |
Methods for Quantitative Magnetic Resonance Imaging ('qMRI')
Description
Implementation of methods for estimation of quantitative maps from Multi-Parameter Mapping (MPM) acquisitions (Weiskopf et al. (2013) <doi:10.3389/fnins.2013.00095>) and analysis of Inversion Recovery MRI data. Usage of the package is described in Polzehl and Tabelow (2023), "Magnetic Resonance Brain Imaging", 2nd Edition, Chapter 6 and 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8>. J. Polzehl and K. Tabelow (2023), "Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data." <doi:10.20347/WIAS.DATA.6> provides extensive example code and data.
Details
The DESCRIPTION file:
| Package: | qMRI |
| Type: | Package |
| Title: | Methods for Quantitative Magnetic Resonance Imaging ('qMRI') |
| Version: | 1.2.7.6 |
| Date: | 2024-05-17 |
| Authors@R: | c(person("Joerg", "Polzehl", role = c("aut"), email = "joerg.polzehl@wias-berlin.de"), person("Karsten", "Tabelow", role = c("aut", "cre"), email = "karsten.tabelow@wias-berlin.de"), person("WIAS Berlin", role = c("cph", "fnd"))) |
| Maintainer: | Karsten Tabelow <karsten.tabelow@wias-berlin.de> |
| Depends: | R (>= 3.5), awsMethods (>= 1.0), methods, parallel |
| Imports: | oro.nifti (>= 0.9), stringr, aws (>= 2.4), adimpro (>= 0.9) |
| LazyData: | TRUE |
| Description: | Implementation of methods for estimation of quantitative maps from Multi-Parameter Mapping (MPM) acquisitions (Weiskopf et al. (2013) <doi:10.3389/fnins.2013.00095>) and analysis of Inversion Recovery MRI data. Usage of the package is described in Polzehl and Tabelow (2023), "Magnetic Resonance Brain Imaging", 2nd Edition, Chapter 6 and 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8>. J. Polzehl and K. Tabelow (2023), "Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data." <doi:10.20347/WIAS.DATA.6> provides extensive example code and data. |
| License: | GPL (>= 2) |
| Copyright: | This package is Copyright (C) 2015-2024 Weierstrass Institute for Applied Analysis and Stochastics. |
| URL: | https://www.wias-berlin.de/research/ats/imaging/ |
| Suggests: | covr, testthat, knitr, rmarkdown |
| VignetteBuilder: | knitr |
| RoxygenNote: | 6.1.1 |
| Author: | Joerg Polzehl [aut], Karsten Tabelow [aut, cre], WIAS Berlin [cph, fnd] |
Index of help topics:
MREdisplacement Calculate the motion induced signal phase for
IR-MRE in biphasic material
awssigmc Estimate noise variance for multicoil MR
systems
calculateQI Obtain quantitative maps from estimated
ESTATICS parameters.
colMT MT map color scheme
estimateESTATICS Estimate parameters in the ESTATICS model.
estimateIR Estimate IRMRI parameters
estimateIRfluid Estimate parameters in Inversion Recovery MRI
experiments model for CSF voxel
estimateIRsolid Estimate parameters in Inversion Recovery MRI
experiments mixture model for non-fluid voxel
estimateIRsolidfixed Estimate mixture parameter in Inversion
Recovery MRI experiments mixture model for
non-fluid voxel
extract.ANY-method Methods to extract information from objects of
class '"MPMData"', '"ESTATICSModel"',
'"sESTATICSModel"', '"qMaps"', '"IRdata"',
'"IRfluid"' and '"IRmixed"'.
generateIRData generate IR MRI example data
qMRI-package Methods for Quantitative Magnetic Resonance
Imaging ('qMRI')
readIRData Prepare IRMRI dataset
readMPMData Read experimental Multi-Parameter Mapping (MPM)
data.
smoothESTATICS Adaptive smoothing of ESTATICS parameters and
MPM data
smoothIRSolid Smooth object generated by function
'estimateIRsolid'
writeESTATICS Write maps of ESTATICS parameters in
standardized form as NIfTI files.
writeQI Write estimated maps in standardized form as
NIfTI files.
Author(s)
Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de
Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>
References
Weiskopf, N.; Suckling, J.; Williams, G.; Correia, M. M.; Inkster, B.; Tait, R.; Ooi, C.; Bullmore, E. T. & Lutti, A. Quantitative multi-parameter mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation. Front Neurosci, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK., 2013, 7, 95
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R, 2nd Edition, Chapter 6 and 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8>.
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data. <doi:10.20347/WIAS.DATA.6>.
See Also
Examples
dataDir <- system.file("extdata",package="qMRI")
#
# set file names for T1w, MTw and PDw images
#
t1Names <- paste0("t1w_",1:8,".nii.gz")
mtNames <- paste0("mtw_",1:6,".nii.gz")
pdNames <- paste0("pdw_",1:8,".nii.gz")
t1Files <- file.path(dataDir, t1Names)
mtFiles <- file.path(dataDir, mtNames)
pdFiles <- file.path(dataDir, pdNames)
#
# file names of mask and B1 field map
#
B1File <- file.path(dataDir, "B1map.nii.gz")
maskFile <- file.path(dataDir, "mask.nii.gz")
#
# Acquisition parameters (TE, TR, Flip Angle) for T1w, MTw and PDw images
#
TE <- c(2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4)
TR <- rep(25, 22)
FA <- c(rep(21, 8), rep(6, 6), rep(6, 8))
#
# read MPM example data
#
library(qMRI)
mpm <- readMPMData(t1Files, pdFiles, mtFiles,
maskFile, TR = TR, TE = TE,
FA = FA, verbose = FALSE)
#
# Estimate Parameters in the ESTATICS model
#
modelMPM <- estimateESTATICS(mpm, method = "NLR")
#
# smooth maps of ESTATICS Parameters
#
setCores(2)
modelMPMsp1 <- smoothESTATICS(modelMPM,
kstar = 16,
alpha = 0.004,
patchsize=1,
verbose = TRUE)
#
# resulting ESTATICS parameter maps for central coronal slice
#
if(require(adimpro)){
rimage.options(zquantiles=c(.01,.99), ylab="z")
oldpar <- par(mfrow=c(2,4),mar=c(3,3,3,1),mgp=c(2,1,0))
on.exit(par(oldpar))
pnames <- c("T1","MT","PD","R2star")
modelCoeff <- extract(modelMPM,"modelCoeff")
for(i in 1:4){
rimage(modelCoeff[i,,11,])
title(pnames[i])
}
modelCoeff <- extract(modelMPMsp1,"modelCoeff")
for(i in 1:4){
rimage(modelCoeff[i,,11,])
title(paste("smoothed",pnames[i]))
}
}
#
# Compute quantitative maps (R1, R2star, PD, MT)
#
qMRIMaps <- calculateQI(modelMPM,
b1File = B1File,
TR2 = 3.4)
qMRISmoothedp1Maps <- calculateQI(modelMPMsp1,
b1File = B1File,
TR2 = 3.4)
#
# resulting quantitative maps for central coronal slice
#
if(require(adimpro)){
rimage.options(zquantiles=c(.01,.99), ylab="z")
par(mfrow=c(2,4),mar=c(3,3,3,1),mgp=c(2,1,0))
nmaps <- c("R1","R2star","PD","MT")
qmap <- extract(qMRIMaps,nmaps)
for (i in 1:4) rimage(qmap[[i]][,11,],main=nmaps[i])
qmap <- extract(qMRISmoothedp1Maps,nmaps)
for (i in 1:4) rimage(qmap[[i]][,11,],main=paste("Smoothed",nmaps[i]))
}
par(oldpar)