qMRI-package {qMRI} | R Documentation |
Methods for Quantitative Magnetic Resonance Imaging ('qMRI')
Description
Implementation of methods for estimation of quantitative maps from Multi-Parameter Mapping (MPM) acquisitions (Weiskopf et al. (2013) <doi:10.3389/fnins.2013.00095>) and analysis of Inversion Recovery MRI data. Usage of the package is described in Polzehl and Tabelow (2023), "Magnetic Resonance Brain Imaging", 2nd Edition, Chapter 6 and 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8>. J. Polzehl and K. Tabelow (2023), "Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data." <doi:10.20347/WIAS.DATA.6> provides extensive example code and data.
Details
The DESCRIPTION file:
Package: | qMRI |
Type: | Package |
Title: | Methods for Quantitative Magnetic Resonance Imaging ('qMRI') |
Version: | 1.2.7.6 |
Date: | 2024-05-17 |
Authors@R: | c(person("Joerg", "Polzehl", role = c("aut"), email = "joerg.polzehl@wias-berlin.de"), person("Karsten", "Tabelow", role = c("aut", "cre"), email = "karsten.tabelow@wias-berlin.de"), person("WIAS Berlin", role = c("cph", "fnd"))) |
Maintainer: | Karsten Tabelow <karsten.tabelow@wias-berlin.de> |
Depends: | R (>= 3.5), awsMethods (>= 1.0), methods, parallel |
Imports: | oro.nifti (>= 0.9), stringr, aws (>= 2.4), adimpro (>= 0.9) |
LazyData: | TRUE |
Description: | Implementation of methods for estimation of quantitative maps from Multi-Parameter Mapping (MPM) acquisitions (Weiskopf et al. (2013) <doi:10.3389/fnins.2013.00095>) and analysis of Inversion Recovery MRI data. Usage of the package is described in Polzehl and Tabelow (2023), "Magnetic Resonance Brain Imaging", 2nd Edition, Chapter 6 and 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8>. J. Polzehl and K. Tabelow (2023), "Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data." <doi:10.20347/WIAS.DATA.6> provides extensive example code and data. |
License: | GPL (>= 2) |
Copyright: | This package is Copyright (C) 2015-2024 Weierstrass Institute for Applied Analysis and Stochastics. |
URL: | https://www.wias-berlin.de/research/ats/imaging/ |
Suggests: | covr, testthat, knitr, rmarkdown |
VignetteBuilder: | knitr |
RoxygenNote: | 6.1.1 |
Author: | Joerg Polzehl [aut], Karsten Tabelow [aut, cre], WIAS Berlin [cph, fnd] |
Index of help topics:
MREdisplacement Calculate the motion induced signal phase for IR-MRE in biphasic material awssigmc Estimate noise variance for multicoil MR systems calculateQI Obtain quantitative maps from estimated ESTATICS parameters. colMT MT map color scheme estimateESTATICS Estimate parameters in the ESTATICS model. estimateIR Estimate IRMRI parameters estimateIRfluid Estimate parameters in Inversion Recovery MRI experiments model for CSF voxel estimateIRsolid Estimate parameters in Inversion Recovery MRI experiments mixture model for non-fluid voxel estimateIRsolidfixed Estimate mixture parameter in Inversion Recovery MRI experiments mixture model for non-fluid voxel extract.ANY-method Methods to extract information from objects of class '"MPMData"', '"ESTATICSModel"', '"sESTATICSModel"', '"qMaps"', '"IRdata"', '"IRfluid"' and '"IRmixed"'. generateIRData generate IR MRI example data qMRI-package Methods for Quantitative Magnetic Resonance Imaging ('qMRI') readIRData Prepare IRMRI dataset readMPMData Read experimental Multi-Parameter Mapping (MPM) data. smoothESTATICS Adaptive smoothing of ESTATICS parameters and MPM data smoothIRSolid Smooth object generated by function 'estimateIRsolid' writeESTATICS Write maps of ESTATICS parameters in standardized form as NIfTI files. writeQI Write estimated maps in standardized form as NIfTI files.
Author(s)
Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de
Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>
References
Weiskopf, N.; Suckling, J.; Williams, G.; Correia, M. M.; Inkster, B.; Tait, R.; Ooi, C.; Bullmore, E. T. & Lutti, A. Quantitative multi-parameter mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation. Front Neurosci, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK., 2013, 7, 95
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R, 2nd Edition, Chapter 6 and 7, Springer, Use R! Series. <doi:10.1007/978-3-031-38949-8>.
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data. <doi:10.20347/WIAS.DATA.6>.
See Also
Examples
dataDir <- system.file("extdata",package="qMRI")
#
# set file names for T1w, MTw and PDw images
#
t1Names <- paste0("t1w_",1:8,".nii.gz")
mtNames <- paste0("mtw_",1:6,".nii.gz")
pdNames <- paste0("pdw_",1:8,".nii.gz")
t1Files <- file.path(dataDir, t1Names)
mtFiles <- file.path(dataDir, mtNames)
pdFiles <- file.path(dataDir, pdNames)
#
# file names of mask and B1 field map
#
B1File <- file.path(dataDir, "B1map.nii.gz")
maskFile <- file.path(dataDir, "mask.nii.gz")
#
# Acquisition parameters (TE, TR, Flip Angle) for T1w, MTw and PDw images
#
TE <- c(2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8,
2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4)
TR <- rep(25, 22)
FA <- c(rep(21, 8), rep(6, 6), rep(6, 8))
#
# read MPM example data
#
library(qMRI)
mpm <- readMPMData(t1Files, pdFiles, mtFiles,
maskFile, TR = TR, TE = TE,
FA = FA, verbose = FALSE)
#
# Estimate Parameters in the ESTATICS model
#
modelMPM <- estimateESTATICS(mpm, method = "NLR")
#
# smooth maps of ESTATICS Parameters
#
setCores(2)
modelMPMsp1 <- smoothESTATICS(modelMPM,
kstar = 16,
alpha = 0.004,
patchsize=1,
verbose = TRUE)
#
# resulting ESTATICS parameter maps for central coronal slice
#
if(require(adimpro)){
rimage.options(zquantiles=c(.01,.99), ylab="z")
oldpar <- par(mfrow=c(2,4),mar=c(3,3,3,1),mgp=c(2,1,0))
on.exit(par(oldpar))
pnames <- c("T1","MT","PD","R2star")
modelCoeff <- extract(modelMPM,"modelCoeff")
for(i in 1:4){
rimage(modelCoeff[i,,11,])
title(pnames[i])
}
modelCoeff <- extract(modelMPMsp1,"modelCoeff")
for(i in 1:4){
rimage(modelCoeff[i,,11,])
title(paste("smoothed",pnames[i]))
}
}
#
# Compute quantitative maps (R1, R2star, PD, MT)
#
qMRIMaps <- calculateQI(modelMPM,
b1File = B1File,
TR2 = 3.4)
qMRISmoothedp1Maps <- calculateQI(modelMPMsp1,
b1File = B1File,
TR2 = 3.4)
#
# resulting quantitative maps for central coronal slice
#
if(require(adimpro)){
rimage.options(zquantiles=c(.01,.99), ylab="z")
par(mfrow=c(2,4),mar=c(3,3,3,1),mgp=c(2,1,0))
nmaps <- c("R1","R2star","PD","MT")
qmap <- extract(qMRIMaps,nmaps)
for (i in 1:4) rimage(qmap[[i]][,11,],main=nmaps[i])
qmap <- extract(qMRISmoothedp1Maps,nmaps)
for (i in 1:4) rimage(qmap[[i]][,11,],main=paste("Smoothed",nmaps[i]))
}
par(oldpar)