pwrss.z.prop {pwrss} | R Documentation |
One Proportion against a Constant (z Test)
Description
Calculates statistical power or minimum required sample size (only one can be NULL at a time) to test a proportion against a constant.
Formulas are validated using Monte Carlo simulation, G*Power, http://powerandsamplesize.com/ and tables in PASS documentation.
Usage
pwrss.z.prop(p, p0 = 0, margin = 0, arcsin.trans = FALSE, alpha = 0.05,
alternative = c("not equal","greater","less",
"equivalent","non-inferior","superior"),
n = NULL, power = NULL, verbose = TRUE)
Arguments
p |
expected proportion |
p0 |
constant to be compared (a proportion) |
arcsin.trans |
if |
n |
sample size |
power |
statistical power |
alpha |
probability of type I error. |
margin |
non-inferority, superiority, or equivalence margin (margin: boundry of |
alternative |
direction or type of the hypothesis test: "not equal", "greater", "less", "equivalent", "non-inferior", or "superior" |
verbose |
if |
Value
parms |
list of parameters used in calculation |
test |
type of the statistical test (z or t test) |
ncp |
non-centrality parameter |
power |
statistical power |
n |
sample size |
References
Bulus, M., & Polat, C. (in press). pwrss R paketi ile istatistiksel guc analizi [Statistical power analysis with pwrss R package]. Ahi Evran Universitesi Kirsehir Egitim Fakultesi Dergisi. https://osf.io/ua5fc/download/
Chow, S. C., Shao, J., Wang, H., & Lokhnygina, Y. (2018). Sample size calculations in clinical research (3rd ed.). Taylor & Francis/CRC.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Examples
# Example 1: expecting p - p0 smaller than 0
## one-sided test with normal approximation
pwrss.z.prop(p = 0.45, p0 = 0.50,
alpha = 0.05, power = 0.80,
alternative = "less",
arcsin.trans = FALSE)
## one-sided test with arcsine transformation
pwrss.z.prop(p = 0.45, p0 = 0.50,
alpha = 0.05, power = 0.80,
alternative = "less",
arcsin.trans = TRUE)
# Example 2: expecting p - p0 smaller than 0 or greater than 0
## two-sided test with normal approximation
pwrss.z.prop(p = 0.45, p0 = 0.50,
alpha = 0.05, power = 0.80,
alternative = "not equal",
arcsin.trans = FALSE)
## two-sided test with arcsine transformation
pwrss.z.prop(p = 0.45, p0 = 0.50,
alpha = 0.05, power = 0.80,
alternative = "not equal",
arcsin.trans = TRUE)
# Example 2: expecting p - p0 smaller than 0.01
# when smaller proportion is better
## non-inferiority test with normal approximation
pwrss.z.prop(p = 0.45, p0 = 0.50, margin = 0.01,
alpha = 0.05, power = 0.80,
alternative = "non-inferior",
arcsin.trans = FALSE)
## non-inferiority test with arcsine transformation
pwrss.z.prop(p = 0.45, p0 = 0.50, margin = 0.01,
alpha = 0.05, power = 0.80,
alternative = "non-inferior",
arcsin.trans = TRUE)
# Example 3: expecting p - p0 greater than -0.01
# when bigger proportion is better
## non-inferiority test with normal approximation
pwrss.z.prop(p = 0.55, p0 = 0.50, margin = -0.01,
alpha = 0.05, power = 0.80,
alternative = "non-inferior",
arcsin.trans = FALSE)
## non-inferiority test with arcsine transformation
pwrss.z.prop(p = 0.55, p0 = 0.50, margin = -0.01,
alpha = 0.05, power = 0.80,
alternative = "non-inferior",
arcsin.trans = TRUE)
# Example 4: expecting p - p0 smaller than -0.01
# when smaller proportion is better
## superiority test with normal approximation
pwrss.z.prop(p = 0.45, p0 = 0.50, margin = -0.01,
alpha = 0.05, power = 0.80,
alternative = "superior",
arcsin.trans = FALSE)
## superiority test with arcsine transformation
pwrss.z.prop(p = 0.45, p0 = 0.50, margin = -0.01,
alpha = 0.05, power = 0.80,
alternative = "superior",
arcsin.trans = TRUE)
# Example 5: expecting p - p0 greater than 0.01
# when bigger proportion is better
## superiority test with normal approximation
pwrss.z.prop(p = 0.55, p0 = 0.50, margin = 0.01,
alpha = 0.05, power = 0.80,
alternative = "superior",
arcsin.trans = FALSE)
## superiority test with arcsine transformation
pwrss.z.prop(p = 0.55, p0 = 0.50, margin = 0.01,
alpha = 0.05, power = 0.80,
alternative = "superior",
arcsin.trans = TRUE)
# Example 6: expecting p - p0 between -0.01 and 0.01
## equivalence test with normal approximation
pwrss.z.prop(p = 0.50, p0 = 0.50, margin = 0.01,
alpha = 0.05, power = 0.80,
alternative = "equivalent",
arcsin.trans = FALSE)
# equivalence test with arcsine transformation
pwrss.z.prop(p = 0.50, p0 = 0.50, margin = 0.01,
alpha = 0.05, power = 0.80,
alternative = "equivalent",
arcsin.trans = TRUE)