plot.pwrrasch {pwrRasch} | R Documentation |
Plot Statistical Power Curve
Description
Generic plot
function for the pwrrasch
object, which
plots the statistical power curve relating statistical power to sample size
Usage
## S3 method for class 'pwrrasch'
plot(x, plot.sig.level = TRUE, type = c("b", "b"),
pch = c(19, 17), lty = c(1, 3), lwd = c(1, 1), legend = "topleft",
bty = "o", ...)
Arguments
x |
|
plot.sig.level |
If |
type |
Vector indicating type of plot for the statistica power curve and the type 1 risk curve. |
pch |
Vector indicating plotting symbol for the statistical power curve and the type 1 risk curve. |
lty |
Vector indicating line type for the statistical power curve and the type 1 risk curve. |
lwd |
Vector indicating line width for the statistical power curve and the type 1 risk curve. |
legend |
Location of the legend. If |
bty |
Type of box to be drawn around the legend. |
... |
Additional arguments affecting the summary produced. |
Details
Graphical parameters are:
type
The following values are possible:"p"
for points,"l"
for lines,"b"
for both point and linespch
see pointslty
Line types can be specified as an integer (0
= blank,1
= solid,2
= dashed,3
= dotted,4
= dotdash,5
= longdash,6
= twodash)lwd
Positive numbers indicating line widthslegend
Either the x and y coordinates to be used to position the legend or keyword from the list"bottomright"
,"bottom"
,"bottomleft"
,"left"
,"topleft"
,"top"
,"topright"
,"right"
and"center"
bty
Allowed values are "o" (draw box around legend) and "n" (do not draw box around legend).
Author(s)
Takuya Yanagida takuya.yanagida@univie.ac.at, Jan Steinfeld jan.steinfeld@univie.ac.at
References
Kubinger, K. D., Rasch, D., & Yanagida, T. (2009). On designing data-sampling for Rasch model calibrating an achievement test. Psychology Science Quarterly, 51, 370-384.
Kubinger, K. D., Rasch, D., & Yanagida, T. (2011). A new approach for testing the Rasch model. Educational Research and Evaluation, 17, 321-333.
Examples
## Not run:
# item parameters
ipar2 <- ipar1 <- seq(-3, 3, length.out = 20)
# model differential item function (DIF)
ipar2[10] <- ipar1[11]
ipar2[11] <- ipar1[10]
# simulation for b = 100, 200, 300, 400, 500
simres <- pwr.rasch(seq(100, 500, by = 100), ipar = list(ipar1, ipar2))
plot(simres)
## End(Not run)