criterion {pwrFDR} | R Documentation |
BH-FDR and Romano Criterion
Description
Compute BH-FDR step up criterion, or Romano step-down criterion
Usage
criterion(alpha, delta, N.tests, FDP.control.method = c("BHFDR", "Romano"))
Arguments
alpha |
The false discovery rate (in the BH case) or the upper bound on the probability that the FDP exceeds lambda (Romano case) |
delta |
If the "FDP.control.method" is set to 'Romano' then the user can set the
exceedance thresh-hold for the FDP tail probability control
|
N.tests |
The number of simultaneous hypothesis tests. |
FDP.control.method |
A character string specifying how the false discovery proportion (FDP) is to be
controlled. You may specify the whole word or any shortened uniquely
identifying truncation. |
Value
The step down or step up criterion, which is a vector of length N.tests
Author(s)
Grant Izmirlian <izmirlian at nih dot gov>
References
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995; 57(1):289-300.
Romano J.P. and Shaikh A.M. On stepdown control of the false discovery proportion. IMS Lecture Notes–Monograph Series. 2006; 49:33-50. DOI: 10.1214/074921706000000383.
Examples
library(pwrFDR)
crit.b <- criterion(N.tests=1000, alpha=0.15, FDP.control.method="BHFDR")
crit.r <- criterion(N.tests=1000, alpha=0.15, FDP.control.method="Romano")
crit.r.17 <- criterion(N.tests=1000, alpha=0.15, delta=0.17, FDP.control.method="Romano")
matplot(1:1000, cbind(crit.b, crit.r, crit.r.17), type="l", lty=1, col=2:4)