cCDF.Rom {pwrFDR} | R Documentation |
Computes the complimentary CDF for the significant call proportion, R_m/m.
Description
Computes the complimentary CDF for the significant call proportion, R_m/m via asymptotic approximation. Included here mainly for pedagogic purposes.
Usage
cCDF.Rom(u, effect.size, n.sample, r.1, alpha, delta, groups = 2, N.tests,
type = c("paired", "balanced", "unbalanced"), grpj.per.grp1 = NULL,
FDP.control.method = "BHFDR", control = list(tol = 1e-08,
max.iter = c(1000, 20), distopt = 1, CS = list(NULL),
sim.level = 2, low.power.stop = TRUE, FDP.meth.thresh = FDP.cntl.mth.thrsh.def,
verb = FALSE))
Arguments
u |
A sorted vector of values on the interval [0, 1] for which the cCDF of R_m/m should be computed. |
effect.size |
The effect size (mean over standard deviation) for test statistics having non-zero means. Assumed to be a constant (in magnitude) over non-zero mean test statistics. |
n.sample |
The number of experimental replicates. Required for calculation of power |
r.1 |
The proportion of simultaneous tests that are non-centrally located |
alpha |
The false discovery rate (in the BH case) or the upper bound on the probability that the FDP exceeds delta (Romano case) |
delta |
If the "FDP.control.method" is set to 'Romano' or 'BHCLT', then the
user can set the exceedance thresh-hold for the FDP tail probability
control |
groups |
The number of experimental groups to compare. Must be integral and >=1. The default value is 2. |
N.tests |
The number of simultaneous hypothesis tests. |
type |
A character string specifying, in the groups=2 case, whether the test is 'paired', 'balanced', or 'unbalanced' and in the case when groups >=3, whether the test is 'balanced' or 'unbalanced'. The default in all cases is 'balanced'. Left unspecified in the one sample (groups=1) case. |
grpj.per.grp1 |
Required when |
FDP.control.method |
A character string specifying how the false discovery proportion (FDP) is to be
controlled. You may specify the whole word or any shortened uniquely
identifying truncation. |
control |
Optionally, a list with components with the following
components: |
Value
An object of class cdf
which contains components
call |
The call which produced the result |
cCDF.Rom |
A data frame with columns |
Author(s)
Grant Izmirlian <izmirlian at nih dot gov>
References
Izmirlian G. (2020) Strong consistency and asymptotic normality for quantities related to the Benjamini-Hochberg false discovery rate procedure. Statistics and Probability Letters; 108713, <doi:10.1016/j.spl.2020.108713>.
Izmirlian G. (2017) Average Power and \lambda
-power in
Multiple Testing Scenarios when the Benjamini-Hochberg False
Discovery Rate Procedure is Used. <arXiv:1801.03989>
Jung S-H. (2005) Sample size for FDR-control in microarray data analysis. Bioinformatics; 21:3097-3104.
Liu P. and Hwang J-T. G. (2007) Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics; 23:739-746.
Lehmann E. L., Romano J. P.. Generalizations of the familywise error rate. Ann. Stat.. 2005;33(3):1138–1154.
Romano Joseph P., Shaikh Azeem M.. Stepup procedures for control of generalizations of the familywise error rate. Ann. Stat.. 2006;34(4):1850-1873.
See Also
Examples
library(pwrFDR)
u <- seq(from=0,to=1,len=100000)
rslt <- cCDF.Rom(u=u, effect.size=0.9, n.sample=70, r.1=0.05, alpha=0.15, N.tests=1000,
FDP.control.method="Auto")
## plot the result
with(rslt$cCDF.Rom, plot(u, cCDF.Rom, type="s"))
## compute the mean and median as a check
DX <- function(x)c(x[1], diff(x))
.mean. <- with(rslt$cCDF.Rom, sum(cCDF.Rom*DX(u)))
.median. <- with(rslt$cCDF.Rom, u[max(which(cCDF.Rom>0.5))])