analyze.pvs {pvclass} | R Documentation |
Analyze P-Values
Description
Graphical displays and quantitative analyses of a matrix of p-values.
Usage
analyze.pvs(pv, Y = NULL, alpha = 0.05, roc = TRUE, pvplot = TRUE, cex = 1)
Arguments
pv |
|
Y |
optional. Vector indicating the classes which the observations belong to. |
alpha |
test level, i.e. 1 - confidence level. |
roc |
logical. If |
pvplot |
logical. If |
cex |
A numerical value giving the amount by which plotting text should be magnified relative to the default. |
Details
Displays the p-values graphically, i.e. it plots for each p-value a rectangle. The area of this rectangle is proportional to the the p-value. The rectangle is drawn blue if the p-value is greater than alpha
and red otherwise.
If Y
is not NULL
, i.e. the class memberships of the observations are known (e.g. cross-validated p-values), then additionally it plots the empirical ROC curves and prints some empirical conditional inclusion probabilities I(b,\theta)
and/or pattern probabilities P(b,S)
. Precisely, I(b,\theta)
is the proportion of training observations of class b
whose p-value for class \theta
is greater than \alpha
, while P(b,S)
is the proportion of training observations of class b
such that the (1 - \alpha)
-prediction region equals S
.
Value
T |
Table containing empirical conditional inclusion and/or pattern probabilities for each class |
Author(s)
Niki Zumbrunnen niki.zumbrunnen@gmail.com
Lutz Dümbgen lutz.duembgen@stat.unibe.ch
www.imsv.unibe.ch/duembgen/index_ger.html
References
Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. Journal of Statistical Software 78(4), 1–19. doi:10.18637/jss.v078.i04
Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. Electronic Journal of Statistics 2, 468–493, available at http://dx.doi.org/10.1214/08-EJS245.
Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.
See Also
Examples
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
cv <- cvpvs(X,Y)
analyze.pvs(cv,Y)
pv <- pvs(NewX, X, Y, method = 'k', k = 10)
analyze.pvs(pv)