ggwave {puls} | R Documentation |
Plot the Partitioned Functional Wave by PULS
Description
After partitioning using PULS, this function can plot the functional waves and color different clusters as well as their medoids.
Usage
ggwave(
toclust.fd,
intervals,
puls.obj,
xlab = NULL,
ylab = NULL,
lwd = 0.5,
alpha = 0.4,
lwd.med = 1
)
Arguments
toclust.fd |
A functional data object (i.e., having class |
intervals |
A data set (or matrix) with rows are intervals and columns are the beginning and ending indexes of of the interval. |
puls.obj |
A |
xlab |
Labels for x-axis. If not provided, the labels stored in |
ylab |
Labels for y-axis. If not provided, the labels stored in |
lwd |
Linewidth of normal waves. |
alpha |
Transparency of normal waves. |
lwd.med |
Linewidth of medoid waves. |
Value
A ggplot2 object.
Examples
library(fda)
# Build a simple fd object from already smoothed smoothed_arctic
data(smoothed_arctic)
NBASIS <- 300
NORDER <- 4
y <- t(as.matrix(smoothed_arctic[, -1]))
splinebasis <- create.bspline.basis(rangeval = c(1, 365),
nbasis = NBASIS,
norder = NORDER)
fdParobj <- fdPar(fdobj = splinebasis,
Lfdobj = 2,
# No need for any more smoothing
lambda = .000001)
yfd <- smooth.basis(argvals = 1:365, y = y, fdParobj = fdParobj)
Jan <- c(1, 31); Feb <- c(31, 59); Mar <- c(59, 90)
Apr <- c(90, 120); May <- c(120, 151); Jun <- c(151, 181)
Jul <- c(181, 212); Aug <- c(212, 243); Sep <- c(243, 273)
Oct <- c(273, 304); Nov <- c(304, 334); Dec <- c(334, 365)
intervals <-
rbind(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)
PULS4_pam <- PULS(toclust.fd = yfd$fd, intervals = intervals,
nclusters = 4, method = "pam")
ggwave(toclust.fd = yfd$fd, intervals = intervals, puls = PULS4_pam)
[Package puls version 0.1.2 Index]