logit.2asym {psyphy} | R Documentation |
Links for Binomial Family with Variable Upper/Lower Asymptotes
Description
These functions provide links for the binamial family so that psychometric functions can be fit with both the upper and lower asymptotes different from 1 and 0, respectively.
Usage
logit.2asym(g, lam)
probit.2asym(g, lam)
cauchit.2asym(g, lam)
cloglog.2asym(g, lam)
weib.2asym( ... )
Arguments
g |
numeric in the range (0, 1), normally <= 0.5, however, which specifies the lower asymptote of the psychometric function. |
lam |
numeric in the range (0, 1), specifying 1 - the upper asymptote of the psychometric function. |
... |
used just to pass along the formals of |
Details
These links are used to specify psychometric functions with the form
P(x) = \gamma + (1 - \gamma - \lambda) p(x)
where \gamma
is the lower asymptote and lambda
is 1 -
the upper asymptote, and p(x)
is the base psychometric function, varying between 0 and 1.
Value
Each link returns a list containing functions required for relating the response to the linear predictor in generalized linear models and the name of the link.
linkfun |
The link function |
linkinv |
The inverse link function |
mu.eta |
The derivative of the inverse link |
valideta |
The domain over which the linear predictor is valid |
link |
A name to be used for the link |
Author(s)
Kenneth Knoblauch
References
Klein S. A. (2001) Measuring, estimating, and understanding the psychometric function: a commentary. Percept Psychophys., 63(8), 1421–1455.
Wichmann, F. A. and Hill, N. J. (2001) The psychometric function: I.Fitting, sampling, and goodness of fit. Percept Psychophys., 63(8), 1293–1313.
See Also
glm
, glm
make.link
, psyfun.2asym
Examples
#A toy example,
b <- 3
g <- 0.05 # simulated false alarm rate
d <- 0.03
a <- 0.04
p <- c(a, b, g, d)
num.tr <- 160
cnt <- 10^seq(-2, -1, length = 6) # contrast levels
#simulated Weibull-Quick observer responses
truep <- g + (1 - g - d) * pweibull(cnt, b, a)
ny <- rbinom(length(cnt), num.tr, truep)
nn <- num.tr - ny
phat <- ny/(ny + nn)
resp.mat <- matrix(c(ny, nn), ncol = 2)
ddprob.glm <- psyfun.2asym(resp.mat ~ cnt, link = probit.2asym)
ddlog.glm <- psyfun.2asym(resp.mat ~ cnt, link = logit.2asym)
# Can fit a Weibull function, but use log contrast as variable
ddweib.glm <- psyfun.2asym(resp.mat ~ log(cnt), link = weib.2asym)
ddcau.glm <- psyfun.2asym(resp.mat ~ cnt, link = cauchit.2asym)
plot(cnt, phat, log = "x", cex = 1.5, ylim = c(0, 1))
pcnt <- seq(0.01, 0.1, len = 100)
lines(pcnt, predict(ddprob.glm, data.frame(cnt = pcnt),
type = "response"), lwd = 5)
lines(pcnt, predict(ddlog.glm, data.frame(cnt = pcnt),
type = "response"), lwd = 2, lty = 2, col = "blue")
lines(pcnt, predict(ddweib.glm, data.frame(cnt = pcnt),
type = "response"), lwd = 3, col = "grey")
lines(pcnt, predict(ddcau.glm, data.frame(cnt = pcnt),
type = "response"), lwd = 3, col = "grey", lty = 2)