DIFSim {psychotree} | R Documentation |
Artificial Data with Differential Item Functioning
Description
Artificial data simulated from a Rasch model and a partial credit model, respectively, where the items exhibit differential item functioning (DIF).
Usage
data(DIFSim)
data(DIFSimPC)
Format
Two data frames containing 200 and 500 observations, respectively, on 4 variables.
- resp
an
itemresp
matrix with binary or polytomous results for 20 or 8 items, respectively.- age
age in years.
- gender
factor indicating gender.
- motivation
ordered factor indicating motivation level.
Details
The data are employed for illustrations in Strobl et al. (2015)
and Komboz et al. (2018). See the manual pages for
raschtree
and pctree
for fitting the
tree models..
References
Komboz B, Zeileis A, Strobl C (2018). Tree-Based Global Model Tests for Polytomous Rasch Models. Educational and Psychological Measurement, 78(1), 128–166. doi:10.1177/0013164416664394
Strobl C, Kopf J, Zeileis A (2015). Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model. Psychometrika, 80(2), 289–316. doi:10.1007/s11336-013-9388-3
See Also
Examples
## data
data("DIFSim", package = "psychotree")
data("DIFSimPC", package = "psychotree")
## summary of covariates
summary(DIFSim[, -1])
summary(DIFSimPC[, -1])
## empirical frequencies of responses
plot(DIFSim$resp)
plot(DIFSimPC$resp)
## histogram of raw scores
hist(rowSums(DIFSim$resp), breaks = 0:20 - 0.5)
hist(rowSums(DIFSimPC$resp), breaks = 0:17 - 0.5)