reshape_vec2mat {psychmeta} | R Documentation |
Assemble a variance-covariance matrix
Description
The reshape_vec2mat
function facilitates the creation of square correlation/covariance matrices from scalars or vectors of variances/covariances.
It allows the user to supply a vector of covariances that make up the lower triangle of a matrix, determines the order of the matrix necessary to hold those covariances, and constructs a matrix accordingly.
Usage
reshape_vec2mat(
cov = NULL,
var = NULL,
order = NULL,
var_names = NULL,
by_row = FALSE,
diag = FALSE
)
Arguments
cov |
Scalar or vector of covariance information to include the lower-triangle positions of the matrix (default value is zero).
If a vector, the elements must be provided in the order associated with concatenated column ( |
var |
Scalar or vector of variance information to include the diagonal positions of the matrix (default value is 1). |
order |
If cov and var are scalars, this argument determines the number of variables to create in the output matrix. |
var_names |
Optional vector of variable names. |
by_row |
Logical scalar indicating whether |
diag |
Logical scalar indicating whether |
Value
A variance-covariance matrix
Examples
## Specify the lower triangle covariances
## Can provide names for the variables
reshape_vec2mat(cov = c(.3, .2, .4), var_names = c("x", "y", "z"))
## Specify scalar values to repeat for the covariances and variances
reshape_vec2mat(cov = .3, var = 2, order = 3)
## Give a vector of variances to create a diagonal matrix
reshape_vec2mat(var = 1:5)
## Specify order only to create identity matrix
reshape_vec2mat(order = 3)
## Specify order and scalar variance to create a scalar matrix
reshape_vec2mat(var = 2, order = 3)
## A quick way to make a 2x2 matrix for bivariate correlations
reshape_vec2mat(cov = .2)