plot_funnel {psychmeta} | R Documentation |
Create funnel plots
Description
This function creates funnel plots for meta-analyses (plots of effect size versus standard error).
Usage
plot_funnel(
ma_obj,
se_type = c("auto", "mean", "sample"),
label_es = NULL,
conf_level = c(0.95, 0.99),
conf_linetype = c("dashed", "dotted"),
conf_fill = NA,
conf_alpha = 1,
null_effect = NA,
null_conf_level = c(0.9, 0.95, 0.99),
null_conf_linetype = c("solid", "dashed", "dotted"),
null_conf_fill = "black",
null_conf_alpha = c(0.1, 0.2, 0.4),
analyses = "all",
match = c("all", "any"),
case_sensitive = TRUE,
show_filtered = FALSE
)
plot_cefp(
ma_obj,
se_type = "sample",
label_es = NULL,
conf_level = NA,
conf_linetype = NA,
conf_fill = NA,
conf_alpha = 1,
null_effect = NULL,
null_conf_level = c(0.9, 0.95, 0.99),
null_conf_linetype = c("solid", "dashed", "dotted"),
null_conf_fill = "black",
null_conf_alpha = c(0, 0.2, 0.4),
analyses = "all",
match = c("all", "any"),
case_sensitive = TRUE,
show_filtered = FALSE
)
Arguments
ma_obj |
Meta-analysis object. |
se_type |
Method to calculate standard errors (y-axis). Options are |
label_es |
Label for effect size (x-axis). Defaults to "Correlation (r)" for correlation meta-analyses, "Cohen's d (Hedges's g)" for d value meta-analyses, and "Effect size" for generic meta-analyses. |
conf_level |
Confidence regions levels to be plotted (default: .95, .99). |
conf_linetype |
Line types for confidence region boundaries. Length should be either 1 or equal to the length of conf_level. |
conf_fill |
Colors for confidence regions. Set to |
conf_alpha |
Transparency level for confidence regions. Length should be either 1 or equal to the length of conf_level. |
null_effect |
Null effect to be plotted for contour-enhanced funnel plots. If |
null_conf_level |
Null-effect confidence regions levels to be plotted (default: .90, .95, .99). |
null_conf_linetype |
Line types for null-effect confidence region boundaries. Length should be either 1 or equal to the length of null_conf_level. |
null_conf_fill |
Colors for null-effect confidence regions. Set to |
null_conf_alpha |
Transparency level for null-effect confidence regions. Length should be either 1 or equal to the length of null_conf_level. |
analyses |
Which analyses to extract? Can be either |
match |
Should extracted meta-analyses match all (default) or any of the criteria given in |
case_sensitive |
Logical scalar that determines whether character values supplied in |
show_filtered |
Logical scalar that determines whether the meta-analysis object given in the output should be the modified input object ( |
Details
Both traditional funnel plots and contour-enhanced funnel plots are provided. Contour-enhanced funnel plots show comparison regions for varying null-hypothesis significance test levels and can be useful for detecting publication bias.
Value
A list of funnel plots.
Author(s)
Based on code by John Sakaluk
Examples
## Not run:
## Correlations
ma_obj <- ma_r(ma_method = "ic", rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi,
construct_x = x_name, construct_y = y_name, sample_id = sample_id,
moderators = moderator, data = data_r_meas_multi)
plot_funnel(ma_obj = ma_obj)
plot_funnel(ma_obj = ma_obj, analyses = list(pair_id = 2))
plot_funnel(ma_obj = ma_obj, analyses = list(pair_id = 1, analysis_id = 1), show_filtered = TRUE)
## d values
ma_obj <- ma_d(ma_method = "ic", d = d, n1 = n1, n2 = n2, ryy = ryyi,
construct_y = construct, sample_id = sample_id,
data = data_d_meas_multi)
plot_funnel(ma_obj = ma_obj)
plot_funnel(ma_obj = ma_obj, analyses = list(pair_id = 2))
plot_funnel(ma_obj = ma_obj, analyses = list(pair_id = 1, analysis_id = 1), show_filtered = TRUE)
## End(Not run)