estimate_var_rho_tsa {psychmeta}R Documentation

Taylor Series Approximation of variance of ρ\rho corrected for psychometric artifacts

Description

Functions to estimate the variance of ρ\rho corrected for psychometric artifacts. These functions use Taylor series approximations (i.e., the delta method) to estimate the variance in observed effect sizes predictable from the variance in artifact distributions based on the partial derivatives.

The available Taylor-series functions include:

Usage

estimate_var_rho_tsa_meas(
  mean_rtp,
  var_rxy,
  var_e,
  mean_qx = 1,
  var_qx = 0,
  mean_qy = 1,
  var_qy = 0,
  ...
)

estimate_var_rho_tsa_uvdrr(
  mean_rtpa,
  var_rxyi,
  var_e,
  mean_ux = 1,
  var_ux = 0,
  mean_qxa = 1,
  var_qxa = 0,
  mean_qyi = 1,
  var_qyi = 0,
  ...
)

estimate_var_rho_tsa_bvdrr(
  mean_rtpa,
  var_rxyi,
  var_e = 0,
  mean_ux = 1,
  var_ux = 0,
  mean_uy = 1,
  var_uy = 0,
  mean_qxa = 1,
  var_qxa = 0,
  mean_qya = 1,
  var_qya = 0,
  ...
)

estimate_var_rho_tsa_uvirr(
  mean_rtpa,
  var_rxyi,
  var_e,
  mean_ut = 1,
  var_ut = 0,
  mean_qxa = 1,
  var_qxa = 0,
  mean_qyi = 1,
  var_qyi = 0,
  ...
)

estimate_var_rho_tsa_bvirr(
  mean_rtpa,
  var_rxyi,
  var_e = 0,
  mean_ux = 1,
  var_ux = 0,
  mean_uy = 1,
  var_uy = 0,
  mean_qxa = 1,
  var_qxa = 0,
  mean_qya = 1,
  var_qya = 0,
  sign_rxz = 1,
  sign_ryz = 1,
  ...
)

estimate_var_rho_tsa_rb1(
  mean_rtpa,
  var_rxyi,
  var_e,
  mean_ux = 1,
  var_ux = 0,
  mean_rxx = 1,
  var_rxx = 0,
  mean_ryy = 1,
  var_ryy = 0,
  ...
)

estimate_var_rho_tsa_rb2(
  mean_rtpa,
  var_rxyi,
  var_e,
  mean_ux = 1,
  var_ux = 0,
  mean_qx = 1,
  var_qx = 0,
  mean_qy = 1,
  var_qy = 0,
  ...
)

Arguments

mean_rtp

Mean corrected correlation.

var_rxy

Variance of observed correlations.

var_e

Error variance of observed correlations

mean_qx

Mean square root of reliability for X.

var_qx

Variance of square roots of reliability estimates for X.

mean_qy

Mean square root of reliability for Y.

var_qy

Variance of square roots of reliability estimates for Y.

...

Additional arguments.

mean_rtpa

Mean corrected correlation.

var_rxyi

Variance of observed correlations.

mean_ux

Mean observed-score u ratio for X.

var_ux

Variance of observed-score u ratios for X.

mean_qxa

Mean square root of unrestricted reliability for X.

var_qxa

Variance of square roots of unrestricted reliability estimates for X.

mean_qyi

Mean square root of restricted reliability for Y.

var_qyi

Variance of square roots of restricted reliability estimates for Y.

mean_uy

Mean observed-score u ratio for Y.

var_uy

Variance of observed-score u ratios for Y.

mean_qya

Mean square root of unrestricted reliability for Y.

var_qya

Variance of square roots of unrestricted reliability estimates for Y.

mean_ut

Mean true-score u ratio for X.

var_ut

Variance of true-score u ratios for X.

sign_rxz

Sign of the relationship between X and the selection mechanism.

sign_ryz

Sign of the relationship between Y and the selection mechanism.

mean_rxx

Mean reliability for X.

var_rxx

Variance of reliability estimates for X.

mean_ryy

Mean reliability for Y.

var_ryy

Variance of reliability estimates for Y.

Details

######## Measurement error only ########

The attenuation formula for measurement error is

ρXY=ρTPqXqY\rho_{XY}=\rho_{TP}q_{X}q_{Y}

where ρXY\rho_{XY} is an observed correlation, ρTP\rho_{TP} is a true-score correlation, and qXq_{X} and qYq_{Y} are the square roots of reliability coefficients for X and Y, respectively.

The Taylor series approximation of the variance of ρTP\rho_{TP} can be computed using the following linear equation,

varρTP[varrXYvare(b12varqX+b22varqY)]/b32var_{\rho_{TP}} \approx \left[var_{r_{XY}}-var_{e}-\left(b_{1}^{2}var_{q_{X}}+b_{2}^{2}var_{q_{Y}}\right)\right]/b_{3}^{2}

where b1b_{1}, b2b_{2}, and b3b_{3} are first-order partial derivatives of the attenuation formula with respect to qXq_{X}, qYq_{Y}, and ρTP\rho_{TP}, respectively. The first-order partial derivatives of the attenuation formula are:

b1=ρXYqX=ρTPqYb_{1}=\frac{\partial\rho_{XY}}{\partial q_{X}}=\rho_{TP}q_{Y}

b2=ρXYqY=ρTPqXb_{2}=\frac{\partial\rho_{XY}}{\partial q_{Y}}=\rho_{TP}q_{X}

b3=ρXYρTP=qXqYb_{3}=\frac{\partial\rho_{XY}}{\partial\rho_{TP}}=q_{X}q_{Y}

######## Univariate direct range restriction (UVDRR; i.e., Case II) ########

The UVDRR attenuation procedure may be represented as

ρXYi=ρTPaqYiqXauXρTPa2qXa2(uX21)+1\rho_{XY_{i}}=\frac{\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}u_{X}}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}\left(u_{X}^{2}-1\right)+1}}

The attenuation formula can also be represented as:

ρXYi=ρTPaqYiqXauXA\rho_{XY_{i}}=\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}u_{X}A

where

A=1ρTPa2qXa2(uX21)+1A=\frac{1}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}\left(u_{X}^{2}-1\right)+1}}

The Taylor series approximation of the variance of ρTPa\rho_{TP_{a}} can be computed using the following linear equation,

varρTPa[varrXYivare(b12varqXa+b22varqYi+b32varuX)]/b42var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{X}}\right)\right]/b_{4}^{2}

where b1b_{1}, b2b_{2}, b3b_{3}, and b4b_{4} are first-order partial derivatives of the attenuation formula with respect to qXaq_{X_{a}}, qYiq_{Y_{i}}, uXu_{X}, and ρTPa\rho_{TP_{a}}, respectively. The first-order partial derivatives of the attenuation formula are:

b1=ρXYiqXa=ρTPaqYiuXA3b_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\rho_{TP_{a}}q_{Y_{i}}u_{X}A^{3}

b2=ρXYiqYi=ρXYiqYib_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\rho_{XY_{i}}}{q_{Y_{i}}}

b3=ρXYiuX=ρTPaqYiqXa(ρTPa2qXa21)A3b_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=-\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}-1\right)A^{3}

b4=ρXYiρTPa=qYiqXauXA3b_{4}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=q_{Y_{i}}q_{X_{a}}u_{X}A^{3}

######## Univariate indirect range restriction (UVIRR; i.e., Case IV) ########

Under univariate indirect range restriction, the attenuation formula yielding ρXYi\rho_{XY_{i}} is:

ρXYi=uTqXauT2qXa2+1qXa2uTρTPauT2ρTPa2+1ρTPa2\rho_{XY_{i}}=\frac{u_{T}q_{X_{a}}}{\sqrt{u_{T}^{2}q_{X_{a}}^{2}+1-q_{X_{a}}^{2}}}\frac{u_{T}\rho_{TP_{a}}}{\sqrt{u_{T}^{2}\rho_{TP_{a}}^{2}+1-\rho_{TP_{a}}^{2}}}

The attenuation formula can also be represented as:

ρXYi=qXaqYiρTPauT2AB\rho_{XY_{i}}=q_{X_{a}}q_{Y_{i}}\rho_{TP_{a}}u_{T}^{2}AB

where

A=1uT2qXa2+1qXa2A=\frac{1}{\sqrt{u_{T}^{2}q_{X_{a}}^{2}+1-q_{X_{a}}^{2}}}

and

B=1uT2ρTPa2+1ρTPa2B=\frac{1}{\sqrt{u_{T}^{2}\rho_{TP_{a}}^{2}+1-\rho_{TP_{a}}^{2}}}

The Taylor series approximation of the variance of ρTPa\rho_{TP_{a}} can be computed using the following linear equation,

varρTPa[varrXYivare(b12varqXa+b22varqYi+b32varuT)]/b42var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{T}}\right)\right]/b_{4}^{2}

where b1b_{1}, b2b_{2}, b3b_{3}, and b4b_{4} are first-order partial derivatives of the attenuation formula with respect to qXaq_{X_{a}}, qYiq_{Y_{i}}, uTu_{T}, and ρTPa\rho_{TP_{a}}, respectively. The first-order partial derivatives of the attenuation formula are:

b1=ρXYiqXa=ρXYiqXaρXYiqXaB2(uT21)b_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\rho_{XY_{i}}}{q_{X_{a}}}-\rho_{XY_{i}}q_{X_{a}}B^{2}\left(u_{T}^{2}-1\right)

b2=ρXYiqYi=ρXYiqYib_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\rho_{XY_{i}}}{q_{Y_{i}}}

b3=ρXYiuT=2ρXYiuTρXYiuTqXa2B2ρXYiuTρTPa2A2b_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{T}}=\frac{2\rho_{XY_{i}}}{u_{T}}-\rho_{XY_{i}}u_{T}q_{X_{a}}^{2}B^{2}-\rho_{XY_{i}}u_{T}\rho_{TP_{a}}^{2}A^{2}

b4=ρXYiρTPa=ρXYiρTPaρXYiρTPaA2(uT21)b_{4}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\rho_{XY_{i}}}{\rho_{TP_{a}}}-\rho_{XY_{i}}\rho_{TP_{a}}A^{2}\left(u_{T}^{2}-1\right)

######## Bivariate direct range restriction (BVDRR) ########

Under bivariate direct range restriction, the attenuation formula yielding ρXYi\rho_{XY_{i}} is:

ρXYi=A+ρTPa2qXaqYa1qXaqYa2ρTPauXuY\rho_{XY_{i}}=\frac{A+\rho_{TP_{a}}^{2}q_{X_{a}}q_{Y_{a}}-\frac{1}{q_{X_{a}}q_{Y_{a}}}}{2\rho_{TP_{a}}u_{X}u_{Y}}

where

A=(1qXaqYaρTPa2qXaqYa)2+4ρTPauX2uY2A=\sqrt{\left(\frac{1}{q_{X_{a}}q_{Y_{a}}}-\rho_{TP_{a}}^{2}q_{X_{a}}q_{Y_{a}}\right)^{2}+4\rho_{TP_{a}}u_{X}^{2}u_{Y}^{2}}

The Taylor series approximation of the variance of ρTPa\rho_{TP_{a}} can be computed using the following linear equation,

varρTPa[varrXYivare(b12varqXa+b22varqYi+b32varuX+b42varuY)]/b52var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{X}}+b_{4}^{2}var_{u_{Y}}\right)\right]/b_{5}^{2}

where b1b_{1}, b2b_{2}, b3b_{3}, b4b_{4}, and b5b_{5} are first-order partial derivatives of the attenuation formula with respect to qXaq_{X_{a}}, qYaq_{Y_{a}}, uXu_{X}, uYu_{Y}, and ρTPa\rho_{TP_{a}}, respectively. First, we define terms to simplify the computation of partial derivatives:

B=(ρTPa2qXa2qYa2+qXaqYaA1)B=\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+q_{X_{a}}q_{Y_{a}}A-1\right)

C=2ρTPaqXa2qYa2uXuYAC=2\rho_{TP_{a}}q_{X_{a}}^{2}q_{Y_{a}}^{2}u_{X}u_{Y}A

The first-order partial derivatives of the attenuation formula are:

b1=ρXYiqXa=(ρTPa2qXa2qYa2+1)BqXaCb_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1\right)B}{q_{X_{a}}C}

b2=ρXYiqYi=(ρTPa2qXa2qYa2+1)BqYaCb_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1\right)B}{q_{Y_{a}}C}

b3=ρXYiuX=(ρTPaqXaqYa1)(ρTPaqXaqYa+1)BuXCb_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=-\frac{\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}-1\right)\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}+1\right)B}{u_{X}C}

b4=ρXYiuY=(ρTPaqXaqYa1)(ρTPaqXaqYa+1)BuYCb_{4}=\frac{\partial\rho_{XY_{i}}}{\partial u_{Y}}=-\frac{\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}-1\right)\left(\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}+1\right)B}{u_{Y}C}

b5=ρXYiρTPa=(ρTPa2qXa2qYa2+1)BρTPaCb_{5}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\left(\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1\right)B}{\rho_{TP_{a}}C}

######## Bivariate indirect range restriction (BVIRR; i.e., Case V) ########

Under bivariate indirect range restriction, the attenuation formula yielding ρXYi\rho_{XY_{i}} is:

ρXYi=ρTPaqXaqYaλ1uX21uY2uXuY\rho_{XY_{i}}=\frac{\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}-\lambda\sqrt{\left|1-u_{X}^{2}\right|\left|1-u_{Y}^{2}\right|}}{u_{X}u_{Y}}

The Taylor series approximation of the variance of ρTPa\rho_{TP_{a}} can be computed using the following linear equation,

varρTPa[varrXYivare(b12varqXa+b22varqYi+b32varuX+b42varuY)]/b52var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(b_{1}^{2}var_{q_{X_{a}}}+b_{2}^{2}var_{q_{Y_{i}}}+b_{3}^{2}var_{u_{X}}+b_{4}^{2}var_{u_{Y}}\right)\right]/b_{5}^{2}

where b1b_{1}, b2b_{2}, b3b_{3}, b4b_{4}, and b5b_{5} are first-order partial derivatives of the attenuation formula with respect to qXaq_{X_{a}}, qYaq_{Y_{a}}, uXu_{X}, uYu_{Y}, and ρTPa\rho_{TP_{a}}, respectively. First, we define terms to simplify the computation of partial derivatives:

b1=ρXYiqXa=ρTPaqYauXuYb_{1}=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\rho_{TP_{a}}q_{Y_{a}}}{u_{X}u_{Y}}

b2=ρXYiqYi=ρTPaqXauXuYb_{2}=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{i}}}=\frac{\rho_{TP_{a}}q_{X_{a}}}{u_{X}u_{Y}}

b3=ρXYiuX=λ(1uX2)1uY2uY1uX21.5ρXYiuXb_{3}=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=\frac{\lambda\left(1-u_{X}^{2}\right)\sqrt{\left|1-u_{Y}^{2}\right|}}{u_{Y}\left|1-u_{X}^{2}\right|^{1.5}}-\frac{\rho_{XY_{i}}}{u_{X}}

b4=ρXYiuY=λ(1uY2)1uX2uX1uY21.5ρXYiuYb_{4}=\frac{\partial\rho_{XY_{i}}}{\partial u_{Y}}=\frac{\lambda\left(1-u_{Y}^{2}\right)\sqrt{\left|1-u_{X}^{2}\right|}}{u_{X}\left|1-u_{Y}^{2}\right|^{1.5}}-\frac{\rho_{XY_{i}}}{u_{Y}}

b5=ρXYiρTPa=qXaqYauXuYb_{5}=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{q_{X_{a}}q_{Y_{a}}}{u_{X}u_{Y}}

######## Raju and Burke's TSA1 procedure ########

Raju and Burke's attenuation formula may be represented as

ρXYi=ρTPauXρXXaρYYaρTPa2ρXXaρYYauX2ρTPa2ρXXaρYYa+1\rho_{XY_{i}}=\frac{\rho_{TP_{a}}u_{X}\sqrt{\rho_{XX_{a}}\rho_{YY_{a}}}}{\sqrt{\rho_{TP_{a}}^{2}\rho_{XX_{a}}\rho_{YY_{a}}u_{X}^{2}-\rho_{TP_{a}}^{2}\rho_{XX_{a}}\rho_{YY_{a}}+1}}

The Taylor series approximation of the variance of ρTPa\rho_{TP_{a}} can be computed using the following linear equation,

varρTPa[varrXYivare(B2varρYYa+C2varρXXa+D2varuX)]/A2var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(B^{2}var_{\rho_{YY_{a}}}+C^{2}var_{\rho_{XX_{a}}}+D^{2}var_{u_{X}}\right)\right]/A^{2}

where A, B, C, and D are first-order partial derivatives of the attenuation formula with respect to ρTPa\rho_{TP_{a}}, ρXXa\rho_{XX_{a}}, ρYYa\rho_{YY_{a}}, and uXu_{X}, respectively. The first-order partial derivatives of the attenuation formula are:

A=ρXYiρTPa=ρXYiρTPa+ρXYi(1uX2)3ρTPauX2A=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\rho_{XY_{i}}}{\rho_{TP_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{TP_{a}}u_{X}^{2}}

B=ρXYiρYYa=12(ρXYiρYYa+ρXYi(1uX2)3ρYYauX2)B=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{YY_{a}}}=\frac{1}{2}\left(\frac{\rho_{XY_{i}}}{\rho_{YY_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{YY_{a}}u_{X}^{2}}\right)

C=ρXYiρXXa=12(ρXYiρXXa+ρXYi(1uX2)3ρXXauX2)C=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{XX_{a}}}=\frac{1}{2}\left(\frac{\rho_{XY_{i}}}{\rho_{XX_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{XX_{a}}u_{X}^{2}}\right)

D=ρXYiuX=ρXYiρXYi3uXD=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=\frac{\rho_{XY_{i}}-\rho_{XY_{i}}^{3}}{u_{X}}

######## Raju and Burke's TSA2 procedure ########

Raju and Burke's attenuation formula may be represented as

ρXYi=ρTPaqXaqYauXρTPa2qXa2qYa2uX2ρTPa2qXa2qYa2+1\rho_{XY_{i}}=\frac{\rho_{TP_{a}}q_{X_{a}}q_{Y_{a}}u_{X}}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}u_{X}^{2}-\rho_{TP_{a}}^{2}q_{X_{a}}^{2}q_{Y_{a}}^{2}+1}}

The Taylor series approximation of the variance of ρTPa\rho_{TP_{a}} can be computed using the following linear equation,

varρTPa[varrXYivare(F2varqYa+G2varqXa+H2varuX)]/E2var_{\rho_{TP_{a}}} \approx \left[var_{r_{XY_{i}}}-var_{e}-\left(F^{2}var_{q_{Y_{a}}}+G^{2}var_{q_{X_{a}}}+H^{2}var_{u_{X}}\right)\right]/E^{2}

where E, F, G, and H are first-order partial derivatives of the attenuation formula with respect to ρTPa\rho_{TP_{a}}, qXaq_{X_{a}}, qYaq_{Y_{a}}, and uXu_{X}, respectively. The first-order partial derivatives of the attenuation formula (with typographic errors in the original article corrected) are:

E=ρXYiρTPa=ρXYiρTPa+ρXYi(1uX2)3ρTPauX2E=\frac{\partial\rho_{XY_{i}}}{\partial\rho_{TP_{a}}}=\frac{\rho_{XY_{i}}}{\rho_{TP_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{\rho_{TP_{a}}u_{X}^{2}}

F=ρXYiqYa=ρXYiqYa+ρXYi(1uX2)3qYauX2F=\frac{\partial\rho_{XY_{i}}}{\partial q_{Y_{a}}}=\frac{\rho_{XY_{i}}}{q_{Y_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{q_{Y_{a}}u_{X}^{2}}

G=ρXYiqXa=ρXYiqXa+ρXYi(1uX2)3qXauX2G=\frac{\partial\rho_{XY_{i}}}{\partial q_{X_{a}}}=\frac{\rho_{XY_{i}}}{q_{X_{a}}}+\frac{\rho_{XY_{i}\left(1-u_{X}^{2}\right)}^{3}}{q_{X_{a}}u_{X}^{2}}

H=ρXYiuX=ρXYiρXYi3uXH=\frac{\partial\rho_{XY_{i}}}{\partial u_{X}}=\frac{\rho_{XY_{i}}-\rho_{XY_{i}}^{3}}{u_{X}}

Value

Vector of meta-analytic variances estimated via Taylor series approximation.

Notes

A typographical error in Raju and Burke's article has been corrected in estimate_var_rho_tsa_rb2 so as to compute appropriate partial derivatives.

References

Dahlke, J. A., & Wiernik, B. M. (2020). Not restricted to selection research: Accounting for indirect range restriction in organizational research. Organizational Research Methods, 23(4), 717–749. doi:10.1177/1094428119859398

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. Journal of Applied Psychology, 91(3), 594–612. doi:10.1037/0021-9010.91.3.594

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. Journal of Applied Psychology, 68(3), 382–395. doi:10.1037/0021-9010.68.3.382

Examples

estimate_var_rho_tsa_meas(mean_rtp = .5, var_rxy = .02, var_e = .01,
                 mean_qx = .8, var_qx = .005,
                 mean_qy = .8, var_qy = .005)
estimate_var_rho_tsa_uvdrr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvdrr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005)
estimate_var_rho_tsa_uvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ut = .8, var_ut = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005,
                  sign_rxz = 1, sign_ryz = 1)
estimate_var_rho_tsa_rb1(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_rxx = .8, var_rxx = .005,
                mean_ryy = .8, var_ryy = .005)
estimate_var_rho_tsa_rb2(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_qx = .8, var_qx = .005,
                mean_qy = .8, var_qy = .005)

[Package psychmeta version 2.7.0 Index]