convert_es {psychmeta} | R Documentation |
Convert effect sizes
Description
This function converts a variety of effect sizes to correlations, Cohen's d
values, or common language effect sizes, and calculates sampling error variances and effective sample sizes.
Usage
convert_es(
es,
input_es = c("r", "d", "delta", "g", "t", "p.t", "F", "p.F", "chisq", "p.chisq", "or",
"lor", "Fisherz", "A", "auc", "cles"),
output_es = c("r", "d", "A", "auc", "cles"),
n1 = NULL,
n2 = NULL,
df1 = NULL,
df2 = NULL,
sd1 = NULL,
sd2 = NULL,
tails = 2
)
Arguments
es |
Vector of effect sizes to convert. |
input_es |
Scalar. Metric of input effect sizes. Currently supports correlations, Cohen's |
output_es |
Scalar. Metric of output effect sizes. Currently supports correlations, Cohen's |
n1 |
Vector of total sample sizes or sample sizes of group 1 of the two groups being contrasted. |
n2 |
Vector of sample sizes of group 2 of the two groups being contrasted. |
df1 |
Vector of input test statistic degrees of freedom (for |
df2 |
Vector of input test statistic within-group degrees of freedom (for |
sd1 |
Vector of pooled (within-group) standard deviations or standard deviations of group 1 of the two groups being contrasted. |
sd2 |
Vector of standard deviations of group 2 of the two groups being contrasted. |
tails |
Vector of the tails for |
Value
A data frame of class es
with variables:
r , d , A |
The converted effect sizes |
n_effective |
The effective total sample size |
n |
The total number of cases (original sample size) |
n1 , n2 |
If applicable, subgroup sample sizes |
var_e |
The estimated sampling error variance |
References
Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19(22), 3127–3131. doi:10.1002/1097-0258(20001130)19:22<3127::AID-SIM784>3.0.CO;2-M
Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Sage.
Ruscio, J. (2008). A probability-based measure of effect size: Robustness to base rates and other factors. Psychological Methods, 13(1), 19–30. doi:10.1037/1082-989X.13.1.19
Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Sage. doi:10.4135/9781483398105
Examples
convert_es(es = 1, input_es="d", output_es="r", n1=100)
convert_es(es = 1, input_es="d", output_es="r", n1=50, n2 = 50)
convert_es(es = .2, input_es="r", output_es="d", n1=100, n2=150)
convert_es(es = -1.3, input_es="t", output_es="r", n1 = 100, n2 = 140)
convert_es(es = 10.3, input_es="F", output_es="d", n1 = 100, n2 = 150)
convert_es(es = 1.3, input_es="chisq", output_es="r", n1 = 100, n2 = 100)
convert_es(es = .021, input_es="p.chisq", output_es="d", n1 = 100, n2 = 100)
convert_es(es = 4.37, input_es="or", output_es="r", n1=100, n2=100)
convert_es(es = 4.37, input_es="or", output_es="d", n1=100, n2=100)
convert_es(es = 1.47, input_es="lor", output_es="r", n1=100, n2=100)
convert_es(es = 1.47, input_es="lor", output_es="d", n1=100, n2=100)