summaryMSDSE {psychReport} | R Documentation |
summaryMSDSE
Description
Aggregate data returning the mean, standard deviation, and standard error
Usage
summaryMSDSE(data, factors, dvs, withinCorrection = NULL)
Arguments
data |
A dataframe |
factors |
List of factors over which to aggregate |
dvs |
List of numeric data columns to aggregate |
withinCorrection |
List of dvs which to apply within-subjects correction to the calculation of the standard deviation and standard error. Within-subject correction calculated according to Morey (2008). NB Data should be normed first (see normData). |
Value
dataframe
Examples
# Example 1:
library(dplyr)
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))
dat <- addDataDF(dat,
RT = list(
"Comp comp" = c(500, 80, 100),
"Comp incomp" = c(550, 80, 140)
),
Error = list(
"Comp comp" = 5,
"Comp incomp" = 10
)
)
datAggVP <- dat %>%
group_by(VP, Comp) %>%
summarize(
N = n(),
RT = mean(RT[Error == 0]),
ER = (sum(Error) / N) * 100
)
datAgg <- summaryMSDSE(datAggVP, "Comp", c("RT", "ER"))
# Example 2:
dat <- createDF(nVP = 50, nTrl = 50, design = list("Comp" = c("comp", "incomp")))
dat <- addDataDF(dat,
RT = list(
"Comp comp" = c(500, 80, 100),
"Comp incomp" = c(550, 80, 140)
),
Error = list(
"Comp comp" = 5,
"Comp incomp" = 10
)
)
datAggVP <- dat %>%
group_by(VP, Comp) %>%
summarize(
N = n(),
RT = mean(RT[Error == 0]),
ER = (sum(Error) / N) * 100
)
datAggVP <- normData(datAggVP, "VP", c("RT", "ER"))
datAgg <- summaryMSDSE(
datAggVP, "Comp", c("RT", "ER", "RT_norm", "ER_norm"),
c("RT_norm", "ER_norm")
)
[Package psychReport version 3.0.2 Index]