interp.median {psych} | R Documentation |
Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame
Description
For data with a limited number of response categories (e.g., attitude items), it is useful treat each response category as range with width, w and linearly interpolate the median, quartiles, or any quantile value within the median response.
Usage
interp.median(x, w = 1,na.rm=TRUE)
interp.quantiles(x, q = .5, w = 1,na.rm=TRUE)
interp.quartiles(x,w=1,na.rm=TRUE)
interp.boxplot(x,w=1,na.rm=TRUE)
interp.values(x,w=1,na.rm=TRUE)
interp.qplot.by(y,x,w=1,na.rm=TRUE,xlab="group",ylab="dependent",
ylim=NULL,arrow.len=.05,typ="b",add=FALSE,...)
Arguments
x |
input vector |
q |
quantile to estimate ( 0 < q < 1 |
w |
category width |
y |
input vector for interp.qplot.by |
na.rm |
should missing values be removed |
xlab |
x label |
ylab |
Y label |
ylim |
limits for the y axis |
arrow.len |
length of arrow in interp.qplot.by |
typ |
plot type in interp.qplot.by |
add |
add the plot or not |
... |
additional parameters to plotting function |
Details
If the total number of responses is N, with median, M, and the number of responses at the median value, Nm >1, and Nb= the number of responses less than the median, then with the assumption that the responses are distributed uniformly within the category, the interpolated median is M - .5w + w*(N/2 - Nb)/Nm.
The generalization to 1st, 2nd and 3rd quartiles as well as the general quantiles is straightforward.
A somewhat different generalization allows for graphic presentation of the difference between interpolated and non-interpolated points. This uses the interp.values function.
If the input is a matrix or data frame, quantiles are reported for each variable.
Value
im |
interpolated median(quantile) |
v |
interpolated values for all data points |
See Also
Examples
interp.median(c(1,2,3,3,3)) # compare with median = 3
interp.median(c(1,2,2,5))
interp.quantiles(c(1,2,2,5),.25)
x <- sample(10,100,TRUE)
interp.quartiles(x)
#
x <- c(1,1,2,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,2)
y <- c(1,2,3,3,3,3,4,4,4,4,4,1,2,3,3,3,3,4,4,4,4,5,1,5,3,3,3,3,4,4,4,4,4)
x <- x[order(x)] #sort the data by ascending order to make it clearer
y <- y[order(y)]
xv <- interp.values(x)
yv <- interp.values(y)
barplot(x,space=0,xlab="ordinal position",ylab="value")
lines(1:length(x)-.5,xv)
points(c(length(x)/4,length(x)/2,3*length(x)/4),interp.quartiles(x))
barplot(y,space=0,xlab="ordinal position",ylab="value")
lines(1:length(y)-.5,yv)
points(c(length(y)/4,length(y)/2,3*length(y)/4),interp.quartiles(y))
if(require(psychTools)) {
data(psychTools::galton)
galton <- psychTools::galton
interp.median(galton)
interp.qplot.by(galton$child,galton$parent,ylab="child height"
,xlab="Mid parent height")
}