psqn_hess {psqn}R Documentation

Computes the Hessian.

Description

Computes the Hessian using numerical differentiation with Richardson extrapolation.

Usage

psqn_hess(
  val,
  fn,
  n_ele_func,
  n_threads = 1L,
  env = NULL,
  eps = 0.001,
  scale = 2,
  tol = 1e-09,
  order = 6L
)

psqn_generic_hess(
  val,
  fn,
  n_ele_func,
  n_threads = 1L,
  env = NULL,
  eps = 0.001,
  scale = 2,
  tol = 1e-09,
  order = 6L
)

Arguments

val

Where to evaluate the function at.

fn

Function to compute the element functions and their derivatives. See psqn and psqn_generic.

n_ele_func

Number of element functions.

n_threads

Number of threads to use.

env

Environment to evaluate fn in. NULL yields the global environment.

eps

Determines the step size. See the details.

scale

Scaling factor in the Richardson extrapolation. See the details.

tol

Relative convergence criteria. See the details.

order

Maximum number of iteration of the Richardson extrapolation.

Details

The function computes the Hessian using numerical differentiation with centered differences and subsequent use of Richardson extrapolation to refine the estimate.

The additional arguments are as follows: The numerical differentiation is applied for each argument with a step size of s = max(eps, |x| * eps). The Richardson extrapolation at iteration i uses a step size of s * scale^(-i). The convergence threshold for each comportment of the gradient is max(tol, |gr(x)[j]| * tol).

The numerical differentiation is done on each element function and thus much more efficient then doing it on the whole gradient.

Examples

# assign model parameters, number of random effects, and fixed effects
q <- 2 # number of private parameters per cluster
p <- 1 # number of global parameters
beta <- sqrt((1:p) / sum(1:p))
Sigma <- diag(q)

# simulate a data set
set.seed(66608927)
n_clusters <- 20L # number of clusters
sim_dat <- replicate(n_clusters, {
  n_members <- sample.int(8L, 1L) + 2L
  X <- matrix(runif(p * n_members, -sqrt(6 / 2), sqrt(6 / 2)),
              p)
  u <- drop(rnorm(q) %*% chol(Sigma))
  Z <- matrix(runif(q * n_members, -sqrt(6 / 2 / q), sqrt(6 / 2 / q)),
              q)
  eta <- drop(beta %*% X + u %*% Z)
  y <- as.numeric((1 + exp(-eta))^(-1) > runif(n_members))

  list(X = X, Z = Z, y = y, u = u, Sigma_inv = solve(Sigma))
}, simplify = FALSE)

# evaluates the negative log integrand.
#
# Args:
#   i cluster/element function index.
#   par the global and private parameter for this cluster. It has length
#       zero if the number of parameters is requested. That is, a 2D integer
#       vector the number of global parameters as the first element and the
#       number of private parameters as the second element.
#   comp_grad logical for whether to compute the gradient.
r_func <- function(i, par, comp_grad){
  dat <- sim_dat[[i]]
  X <- dat$X
  Z <- dat$Z

  if(length(par) < 1)
    # requested the dimension of the parameter
    return(c(global_dim = NROW(dat$X), private_dim = NROW(dat$Z)))

  y <- dat$y
  Sigma_inv <- dat$Sigma_inv

  beta <- par[1:p]
  uhat <- par[1:q + p]
  eta <- drop(beta %*% X + uhat %*% Z)
  exp_eta <- exp(eta)

  out <- -sum(y * eta) + sum(log(1 + exp_eta)) +
    sum(uhat * (Sigma_inv %*% uhat)) / 2
  if(comp_grad){
    d_eta <- -y + exp_eta / (1 + exp_eta)
    grad <- c(X %*% d_eta,
              Z %*% d_eta + dat$Sigma_inv %*% uhat)
    attr(out, "grad") <- grad
  }

  out
}

# compute the hessian
set.seed(1)
par <- runif(p + q * n_clusters, -1)

hess <- psqn_hess(val = par, fn = r_func, n_ele_func = n_clusters)

# compare with numerical differentiation from R
if(require(numDeriv)){
    hess_num <- jacobian(function(x){
        out <- numeric(length(x))
        for(i in seq_len(n_clusters)){
            out_i <- r_func(i, x[c(1:p, 1:q + (i - 1L) * q + p)], TRUE)
            out[1:p] <- out[1:p] + attr(out_i, "grad")[1:p]
            out[1:q + (i - 1L) * q + p] <- attr(out_i, "grad")[1:q + p]
        }
        out
    }, par)

    cat("Output of all.equal\n")
    print(all.equal(Matrix(hess_num, sparse = TRUE), hess))
}


[Package psqn version 0.3.1 Index]