psqn_generic {psqn} | R Documentation |
Generic Partially Separable Function Optimization
Description
Optimization method for generic partially separable functions.
Usage
psqn_generic(
par,
fn,
n_ele_func,
rel_eps = 1e-08,
max_it = 100L,
n_threads = 1L,
c1 = 1e-04,
c2 = 0.9,
use_bfgs = TRUE,
trace = 0L,
cg_tol = 0.5,
strong_wolfe = TRUE,
env = NULL,
max_cg = 0L,
pre_method = 1L,
mask = as.integer(c()),
gr_tol = -1
)
psqn_aug_Lagrang_generic(
par,
fn,
n_ele_func,
consts,
n_constraints,
multipliers = as.numeric(c()),
penalty_start = 1L,
rel_eps = 1e-08,
max_it = 100L,
max_it_outer = 100L,
violations_norm_thresh = 1e-06,
n_threads = 1L,
c1 = 1e-04,
c2 = 0.9,
tau = 1.5,
use_bfgs = TRUE,
trace = 0L,
cg_tol = 0.5,
strong_wolfe = TRUE,
env = NULL,
max_cg = 0L,
pre_method = 1L,
mask = as.integer(c()),
gr_tol = -1
)
Arguments
par |
Initial values for the parameters. |
fn |
Function to compute the element functions and their derivatives. Each call computes an element function. See the examples section. |
n_ele_func |
Number of element functions. |
rel_eps |
Relative convergence threshold. |
max_it |
Maximum number of iterations. |
n_threads |
Number of threads to use. |
c1 |
Thresholds for the Wolfe condition. |
c2 |
Thresholds for the Wolfe condition. |
use_bfgs |
Logical for whether to use BFGS updates or SR1 updates. |
trace |
Integer where larger values gives more information during the optimization. |
cg_tol |
Threshold for the conjugate gradient method. |
strong_wolfe |
|
env |
Environment to evaluate |
max_cg |
Maximum number of conjugate gradient iterations in each iteration. Use zero if there should not be a limit. |
pre_method |
Preconditioning method in the conjugate gradient method. Zero yields no preconditioning, one yields diagonal preconditioning, two yields the incomplete Cholesky factorization from Eigen, and three yields a block diagonal preconditioning. One and three are fast options with three seeming to work well for some poorly conditioned problems. |
mask |
zero based indices for parameters to mask (i.e. fix). |
gr_tol |
convergence tolerance for the Euclidean norm of the gradient. A negative value yields no check. |
consts |
Function to compute the constraints which must be equal to zero. See the example Section. |
n_constraints |
The number of constraints. |
multipliers |
Staring values for the multipliers in the augmented
Lagrangian method. There needs to be the same number of multipliers as the
number of constraints. An empty vector, |
penalty_start |
Starting value for the penalty parameterin the augmented Lagrangian method. |
max_it_outer |
Maximum number of augmented Lagrangian steps. |
violations_norm_thresh |
Threshold for the norm of the constraint violations. |
tau |
Multiplier used for the penalty parameter between each outer iterations. |
Details
The function follows the method described by Nocedal and Wright (2006)
and mainly what is described in Section 7.4. Details are provided
in the psqn vignette. See vignette("psqn", package = "psqn")
.
The partially separable function we consider can be quite general and the
only restriction is that we can write the function to be minimized as a sum
of so-called element functions each of which only depends on a small number
of the parameters. A more restricted version is available through the
psqn
function.
The optimization function is also available in C++ as a header-only library. Using C++ may reduce the computation time substantially. See the vignette in the package for examples.
Value
A list like psqn
and psqn_aug_Lagrang
.
References
Nocedal, J. and Wright, S. J. (2006). Numerical Optimization (2nd ed.). Springer.
Lin, C. and Moré, J. J. (1999). Incomplete Cholesky factorizations with limited memory. SIAM Journal on Scientific Computing.
Examples
# example with a GLM as in the vignette
# assign the number of parameters and number of observations
set.seed(1)
K <- 20L
n <- 5L * K
# simulate the data
truth_limit <- runif(K, -1, 1)
dat <- replicate(
n, {
# sample the indices
n_samp <- sample.int(5L, 1L) + 1L
indices <- sort(sample.int(K, n_samp))
# sample the outcome, y, and return
list(y = rpois(1, exp(sum(truth_limit[indices]))),
indices = indices)
}, simplify = FALSE)
# we need each parameter to be present at least once
stopifnot(length(unique(unlist(
lapply(dat, `[`, "indices")
))) == K) # otherwise we need to change the code
# assign the function we need to pass to psqn_generic
#
# Args:
# i cluster/element function index.
# par the parameters that this element function depends on. It has length zero
# if we need to pass the one-based indices of the parameters that the i'th
# element function depends on.
# comp_grad TRUE of the gradient should be computed.
r_func <- function(i, par, comp_grad){
z <- dat[[i]]
if(length(par) == 0L)
# return the indices
return(z$indices)
eta <- sum(par)
exp_eta <- exp(eta)
out <- -z$y * eta + exp_eta
if(comp_grad)
attr(out, "grad") <- rep(-z$y + exp_eta, length(z$indices))
out
}
# minimize the function
R_res <- psqn_generic(
par = numeric(K), fn = r_func, n_ele_func = length(dat), c1 = 1e-4, c2 = .1,
trace = 0L, rel_eps = 1e-9, max_it = 1000L, env = environment())
# get the same as if we had used optim
R_func <- function(x){
out <- vapply(dat, function(z){
eta <- sum(x[z$indices])
-z$y * eta + exp(eta)
}, 0.)
sum(out)
}
R_func_gr <- function(x){
out <- numeric(length(x))
for(z in dat){
idx_i <- z$indices
eta <- sum(x[idx_i])
out[idx_i] <- out[idx_i] -z$y + exp(eta)
}
out
}
opt <- optim(numeric(K), R_func, R_func_gr, method = "BFGS",
control = list(maxit = 1000L))
# we got the same
all.equal(opt$value, R_res$value)
# also works if we fix some parameters
to_fix <- c(7L, 1L, 18L)
par_fix <- numeric(K)
par_fix[to_fix] <- c(-1, -.5, 0)
R_res <- psqn_generic(
par = par_fix, fn = r_func, n_ele_func = length(dat), c1 = 1e-4, c2 = .1,
trace = 0L, rel_eps = 1e-9, max_it = 1000L, env = environment(),
mask = to_fix - 1L) # notice the -1L because of the zero based indices
# the equivalent optim version is
opt <- optim(
numeric(K - length(to_fix)),
function(par) { par_fix[-to_fix] <- par; R_func (par_fix) },
function(par) { par_fix[-to_fix] <- par; R_func_gr(par_fix)[-to_fix] },
method = "BFGS", control = list(maxit = 1000L))
res_optim <- par_fix
res_optim[-to_fix] <- opt$par
# we got the same
all.equal(res_optim, R_res$par, tolerance = 1e-5)
all.equal(R_res$par[to_fix], par_fix[to_fix]) # the parameters are fixed
# add equality constraints
idx_constrained <- list(c(2L, 19L, 11L, 7L), c(3L, 5L, 8L), 9:7)
# evaluates the c(x) in equalities c(x) = 0.
#
# Args:
# i constrain index.
# par the constrained parameters. It has length zero if we need to pass the
# one-based indices of the parameters that the i'th constrain depends on.
# what integer which is zero if the function should be returned and one if the
# gradient should be computed.
consts <- function(i, par, what){
if(length(par) == 0)
# need to return the indices
return(idx_constrained[[i]])
if(i == 1){
out <- exp(sum(par[1:2])) + exp(sum(par[3:4])) - 1
if(what == 1)
attr(out, "grad") <- c(rep(exp(sum(par[1:2])), 2),
rep(exp(sum(par[3:4])), 2))
} else if(i == 2){
# the parameters need to be on a circle
out <- sum(par^2) - 1
if(what == 1)
attr(out, "grad") <- 2 * par
} else if(i == 3){
out <- sum(par) - .5
if(what == 1)
attr(out, "grad") <- rep(1, length(par))
}
out
}
# optimize with the constraints and masking
res_consts <- psqn_aug_Lagrang_generic(
par = par_fix, fn = r_func, n_ele_func = length(dat), c1 = 1e-4, c2 = .1,
trace = 0L, rel_eps = 1e-8, max_it = 1000L, env = environment(),
consts = consts, n_constraints = length(idx_constrained),
mask = to_fix - 1L)
res_consts
# the constraints are satisfied
consts(1, res_consts$par[idx_constrained[[1]]], 0) # ~ 0
consts(2, res_consts$par[idx_constrained[[2]]], 0) # ~ 0
consts(3, res_consts$par[idx_constrained[[3]]], 0) # ~ 0
# compare with the alabama package
if(require(alabama)){
ala_fit <- auglag(
par_fix, R_func, R_func_gr,
heq = function(x){
c(x[to_fix] - par_fix[to_fix],
consts(1, x[idx_constrained[[1]]], 0),
consts(2, x[idx_constrained[[2]]], 0),
consts(3, x[idx_constrained[[3]]], 0))
}, control.outer = list(trace = 0L))
cat(sprintf("Difference in objective value is %.6f. Parametes are\n",
ala_fit$value - res_consts$value))
print(rbind(alabama = ala_fit$par,
psqn = res_consts$par))
cat("\nOutput from all.equal\n")
print(all.equal(ala_fit$par, res_consts$par))
}
# the overhead here is though quite large with the R interface from the psqn
# package. A C++ implementation is much faster as shown in
# vignette("psqn", package = "psqn"). The reason it is that it is very fast
# to evaluate the element functions in this case