| plot_sp3d {pspatreg} | R Documentation |
Plot and mapping spatio-temporal trends.
Description
Make plots and maps of the spatio-temporal trends
in 3d of the objects fitted with pspatfit function.
Usage
plot_sp3d(object, data, time_var, time_index, addmain = TRUE, addint = TRUE)
Arguments
object |
object returned from |
data |
sf object. |
time_var |
name of the temporal variable in data. |
time_index |
vector of time points to plot. |
addmain |
Add f1_main and f2_main plots in psanova case. |
addint |
Add f12_int in psanova case. |
Value
plots and maps of the spatial trends
Author(s)
| Roman Minguez | roman.minguez@uclm.es |
| Roberto Basile | roberto.basile@univaq.it |
| Maria Durban | mdurban@est-econ.uc3m.es |
| Gonzalo Espana-Heredia | gehllanza@gmail.com |
References
Lee, D. and Durban, M. (2011). P-Spline ANOVA Type Interaction Models for Spatio-Temporal Smoothing. Statistical Modelling, (11), 49-69. <doi:10.1177/1471082X1001100104>
Eilers, P. and Marx, B. (2021). Practical Smoothing. The Joys of P-Splines. Cambridge University Press.
Fahrmeir, L.; Kneib, T.; Lang, S.; and Marx, B. (2021). Regression. Models, Methods and Applications (2nd Ed.). Springer.
Wood, S.N. (2017). Generalized Additive Models. An Introduction with
R(second edition). CRC Press, Boca Raton.
Examples
library(pspatreg)
library(sf)
data(unemp_it, package = "pspatreg")
lwsp_it <- spdep::mat2listw(Wsp_it)
unemp_it_sf <- st_as_sf(dplyr::left_join(
unemp_it, map_it,
by = c("prov" = "COD_PRO")))
######## FORMULA of the model
form3d_psanova_restr <- unrate ~ partrate + agri + cons +
pspl(serv, nknots = 15) +
pspl(empgrowth, nknots = 20) +
pspt(long, lat, year,
nknots = c(18, 18, 8),
psanova = TRUE,
nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3),
nest_time = c(1, 2, 2),
f1t = FALSE, f2t = FALSE)
####### FIT the model
sp3danova <- pspatfit(form3d_psanova_restr,
data = unemp_it_sf)
summary(sp3danova)
###### Plot spatio-temporal trends for different years
plot_sp3d(sp3danova, data = unemp_it_sf,
time_var = "year",
time_index = c(1996, 2005, 2019),
addmain = FALSE, addint = FALSE)
###### Plot of spatio-temporal trend, main effects
###### and interaction effect for a year
plot_sp3d(sp3danova, data = unemp_it_sf,
time_var = "year",
time_index = c(2019),
addmain = TRUE, addint = TRUE)
#### Plot of temporal trend for each province
plot_sptime(sp3danova,
data = unemp_it,
time_var = "year",
reg_var = "prov")