spatialPredict.psgp {psgp} | R Documentation |
Spatial prediction using a Projected Sequential Gaussian Process (PSGP)
Description
This overloads the spatialPredict
routine
from the intamap package for interpolation using the PSGP method.
Usage
spatialPredict(object, ...)
Arguments
object |
a list object of type PSGP. Most arguments necessary for
interpolation are passed through this object. See |
... |
optional extra arguments (these are only used for debugging purposes) |
Details
See psgp-package
and makePrediction
for
further detail.
Author(s)
Ben Ingram, Remi Barillec
See Also
psgp-package
,
estimateParameters
,
makePrediction
createIntamapObject
Examples
data(meuse)
meuse = meuse[1:100,]
coordinates(meuse) = ~x+y
meuse$value = log(meuse$zinc)
data(meuse.grid)
gridded(meuse.grid) = ~x+y
proj4string(meuse) = CRS("epsg:28992")
proj4string(meuse.grid) = CRS("epsg:28992")
# Specify a different observation error model for each observation
nobs = length(meuse$value) # Number of observations
meuse$oeid = seq(1:nobs) # One error model per observation
# Indicate the variance for each of these error models
meuse$oevar <- abs( rnorm( max(meuse$oeid) ) )
# Set up intamap object
obj = createIntamapObject(
observations = meuse,
predictionLocations = meuse.grid,
targetCRS = "epsg:3035",
class = "psgp"
)
# Estimate parameters and predict at new locations (interpolation)
obj = conformProjections(obj)
obj = estimateParameters(obj)
obj = spatialPredict(obj)
# Plot results
plotIntamap(obj)
[Package psgp version 0.3-21 Index]