estimateParameters.psgp {psgp} | R Documentation |
Parameter estimation using a Projected Sequential Gaussian Process (PSGP)
Description
This overloads the estimateParameters
routine
from the intamap package for interpolation using the PSGP method.
Usage
estimateParameters(object, ...)
Arguments
object |
a list object of Intamap type. Most arguments necessary for interpolation are passed through this object. See intamap-package for further description of the necessary content of this variable. |
... |
other parameters for the generic method, not used for this method |
Details
See psgp-package
and learnParameters
for
further details.
Author(s)
Remi Barillec, Ben Ingram
See Also
learnParameters
,
estimateParameters
,
makePrediction
,
createIntamapObject
Examples
# load our favourite dataset
data(meuse)
coordinates(meuse) = ~x+y
meuse$value = log(meuse$zinc)
data(meuse.grid)
gridded(meuse.grid) = ~x+y
proj4string(meuse) = CRS("epsg:28992")
proj4string(meuse.grid) = CRS("epsg:28992")
# the following two steps are only needed if one wishes to
# include observation errors
# indicate which likelihood model should be used for each observation
# in this case we use a different model for each observation
nobs = length(meuse$value) # Number of observations
meuse$oeid <- seq(1:nobs)
# the variances for the error models are random in this example
# in real examples they will come from actual measurements
# characteristics
meuse$oevar <- abs( rnorm( max(meuse$oeid) ) )
# set up intamap object:
obj = createIntamapObject(
observations = meuse,
predictionLocations = meuse.grid,
targetCRS = "epsg:3035",
class = "psgp" # Use PSGP for parameter estimation/interpolation
)
# do interpolation step:
obj = conformProjections(obj)
obj = estimateParameters(obj)
[Package psgp version 0.3-21 Index]