Use Time Series to Generate and Compare Power Spectral Density


[Up] [Top]

Documentation for package ‘psdr’ version 1.0.1

Help Pages

AutomatedCompositePlotting Automated plotting of time series, PSD, and log transformed PSD
CountWindows Create a contingency table to display how many windows (dataframes) fall into particular categories
FindHomogeneousWindows Assess if window (dataframe) share certain features across all observations
GenerateExampleData Produce example data set for demonstrating package functions
GetHomogeneousWindows Get windows (dataframes) that have the same specified column values for all observations
GetSubsetOfWindows Select only windows (dataframes) where a specified column matches a specified value
GetSubsetOfWindowsTwoLevels Select only windows (dataframes) where a two specified columns must match specified values
IdentifyMaxOnXY Given a xy plot. Find the maximum value on the plot
MakeCompositePSDForAllWindows Make PSD for each window (dataframe) in a list and then find the average of all the PSDs
MakeCompositeXYPlotForAllWindows Find averaged xy plots
MakeOneSidedAmplitudeSpectrum Create a one sided amplitude spectrum using time series data
MakePowerSpectralDensity Create a power spectral density (PSD) plot using time series data
PSDDominantFrequencyForMultipleWindows Calculate dominant frequency for multiple PSDs for a single frequency range
PSDIdentifyDominantFrequency Given a time series vector, create a PSD and find the dominant frequency
PSDIntegrationPerFreqBin Given a time series vector, generate a PSD, then calculate integration for specified bins
SingleBinPSDIntegrationForMultipleWindows Calculate integral for multiple PSDs for a single frequency bin
SingleBinPSDIntegrationOrDominantFreqComparison Given sets of windows (dataframes) corresponding to different combos, see if the integration or dominant frequency of a specific frequency range is significantly different between the combos