simpi {pscl} | R Documentation |
Monte Carlo estimate of pi (3.14159265...)
Description
Monte Carlo estimation of pi
Usage
simpi(n)
Arguments
n |
integer, number of Monte Carlo samples, defaults to 1000 |
Details
A crude Monte Carlo estimate of \pi
can be formed as
follows. Sample from the unit square many times (i.e., each sample is
formed with two independent draws from a uniform density on the unit
interval). Compute the proportion p
of sampled points that
lie inside a unit circle centered on the origin; such points
(x,y)
have distance from the origin d = \sqrt{x^2 +
y^2}
less than 1. Four times p
is a
Monte Carlo estimate of \pi
. This function is a wrapper to
a simple C function, bringing noticeable speed gains and memory
efficiencies over implementations in native R.
Contrast this Monte Carlo method with Buffon's needle and refinements thereof (see the discussion in Ripley (1987, 193ff).
Value
the Monte Carlo estimate of \pi
Author(s)
Simon Jackman simon.jackman@sydney.edu.au
References
Ripley, Brain D. 1987 [2006]. Stochastic Simulation. Wiley: Hoboken, New Jersey.
Examples
seed <- round(pi*10000) ## hah hah hah
m <- 6
z <- rep(NA,m)
lim <- rep(NA,m)
for(i in 1:m){
cat(paste("simulation for ",i,"\n"))
set.seed(seed)
timings <- system.time(z[i] <- simpi(10^i))
print(timings)
cat("\n")
lim[i] <- qbinom(prob=pi/4,size=10^i,.975)/10^i * 4
}
## convert to squared error
z <-(z - pi)^2
lim <- (lim - pi)^2
plot(x=1:m,
y=z,
type="b",
pch=16,
log="y",
axes=FALSE,
ylim=range(z,lim),
xlab="Monte Carlo Samples",
ylab="Log Squared Error")
lines(1:m,lim,col="blue",type="b",pch=1)
legend(x="topright",
legend=c("95% bound",
"Realized"),
pch=c(1,16),
lty=c(1,1),
col=c("blue","black"),
bty="n")
axis(1,at=1:m,
labels=c(expression(10^{1}),
expression(10^{2}),
expression(10^{3}),
expression(10^{4}),
expression(10^{5}),
expression(10^{6})))
axis(2)