aftGL {psbcGroup} | R Documentation |
Function to Fit the Penalized Parametric Bayesian Accelerated Failure Time Model with Group Lasso Prior
Description
Penalized parametric Bayesian accelerated failure time model with group lasso prior is implemented to analyze survival data with high-dimensional covariates.
Usage
aftGL(Y, data, grpInx, hyperParams, startValues, mcmc)
Arguments
Y |
a data.frame containing univariate time-to-event outcomes from |
data |
a data.frame containing |
grpInx |
a vector of |
hyperParams |
a list containing hyperparameter values in hierarchical models:
( |
startValues |
a list containing starting values for model parameters. See Examples below. |
mcmc |
a list containing variables required for MCMC sampling. Components include,
|
Value
aftGL
returns an object of class aftGL
.
Author(s)
Kyu Ha Lee, Sounak Chakraborty, (Tony) Jianguo Sun
References
Lee, K. H., Chakraborty, S., and Sun, J. (2017).
Variable Selection for High-Dimensional Genomic Data with Censored Outcomes Using Group Lasso Prior. Computational Statistics and Data Analysis, Volume 112, pages 1-13.
See Also
Examples
# generate some survival data
set.seed(204542)
p = 20
n = 200
logHR.true <- c(rep(4, 10), rep(0, (p-10)))
CovX<-matrix(0,p,p)
for(i in 1:10){
for(j in 1:10){
CovX[i,j] <- 0.3^abs(i-j)
}
}
diag(CovX) <- 1
data <- apply(rmvnorm(n, sigma=CovX, method="chol"), 2, scale)
pred <- as.vector(exp(rowSums(scale(data, center = FALSE, scale = 1/logHR.true))))
t <- rexp(n, rate = pred)
cen <- runif(n, 0, 8)
tcen <- pmin(t, cen)
di <- as.numeric(t <= cen)
n <- dim(data)[1]
p <- dim(data)[2]
Y <- data.frame(cbind(tcen, di))
colnames(Y) <- c("time", "event")
grpInx <- 1:p
K <- length(unique(grpInx))
############################
hyperParams <- list(nu0=3, sigSq0=1, alpha0=0, h0=10^6, rLam=0.5, deltaLam=2)
############################
startValues <- list(alpha=0.1, beta=rep(1,p), sigSq=1, tauSq=rep(0.4,p), lambdaSq=5,
w=log(tcen))
############################
mcmc <- list(numReps=100, thin=1, burninPerc=0.5)
############################
fit <- aftGL(Y, data, grpInx, hyperParams, startValues, mcmc)
## Not run:
vs <- VS(fit, X=data)
## End(Not run)