bate {prome} | R Documentation |
Bayesian Hierarchical Model for RPO data with repeated measures
Description
A Bayesian hierachical model to denoise PRO data using repeated measures.
Usage
bate(x0,x1,group,z,x.range,...)
ResponderAnalysis(x,mcid,type="absolute",conf.level=0.95,show=TRUE)
Arguments
x0 , x1 |
Numeric vector/matrix of observations at T0 (baseline) and T1 (end point) of a study. |
z |
covariates |
group |
group assignments. Current version support one or two groups only |
x.range |
range of data 'x0' and 'x1' |
x |
An R object generated by |
mcid |
A threshold to define 'responder' |
type |
The type of responder analysis: absolute or relative changes |
conf.level |
Confidence level of the credible interval |
show |
control whether results should be displayed |
... |
Parameters ("adapt_delta","stepsize","max_treedepth") to improve model fitting/convergence. |
Value
'xfit': fitted results using stan.
'mu.t0': baseline mean.
'sig.t0': baseline SD.
'sig.me': SD of measurement errors.
'mu.active': mean effect size of active treatment.
'sig.active': sd of effect size of active treatment.
'mu.sham': mean effect size of sham treatment.
'sig.sham': sd of effect size of sham treatment.
Examples
data(n100x3)
out1 <- bate(x0=ex100x3$w0,x1=ex100x3$w1,group=ex100x3$group)
out1
ResponderAnalysis(out1,mcid=1,type="abs")
out2 <- bate(x0=ex100x3$w0,x1=ex100x3$w1,group=ex100x3$group,
control = list(adapt_delta = 0.8,
stepsize = 5,
max_treedepth = 10)
)
out2
ResponderAnalysis(out2,mcid=1,type="abs")
out <- out2
ResponderAnalysis(out,mcid=0.5,type="abs")
ResponderAnalysis(out,mcid=1,type="abs")
ResponderAnalysis(out,mcid=1.5,type="abs")
ResponderAnalysis(out,mcid=0.3,type="relative")
ResponderAnalysis(out,mcid=0.2,type="relative")
ResponderAnalysis(out,mcid=0.1,type="relative")