varsel {projpred} | R Documentation |
Run search and performance evaluation without cross-validation
Description
Run the search part and the evaluation part for a projection predictive
variable selection. The search part determines the predictor ranking (also
known as solution path), i.e., the best submodel for each submodel size
(number of predictor terms). The evaluation part determines the predictive
performance of the submodels along the predictor ranking. A special method is
varsel.vsel()
because it re-uses the search results from an earlier
varsel()
(or cv_varsel()
) run, as illustrated in the main vignette.
Usage
varsel(object, ...)
## Default S3 method:
varsel(object, ...)
## S3 method for class 'vsel'
varsel(object, ...)
## S3 method for class 'refmodel'
varsel(
object,
d_test = NULL,
method = "forward",
ndraws = NULL,
nclusters = 20,
ndraws_pred = 400,
nclusters_pred = NULL,
refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,
verbose = TRUE,
search_control = NULL,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
penalty = NULL,
search_terms = NULL,
search_out = NULL,
seed = NA,
...
)
Arguments
object |
An object of class |
... |
For |
d_test |
A |
method |
The method for the search part. Possible options are
|
ndraws |
Number of posterior draws used in the search part. Ignored if
|
nclusters |
Number of clusters of posterior draws used in the search
part. Ignored in case of L1 search (because L1 search always uses a single
cluster). For the meaning of |
ndraws_pred |
Only relevant if |
nclusters_pred |
Only relevant if |
refit_prj |
For the evaluation part, should the submodels along the
predictor ranking be fitted again ( |
nterms_max |
Maximum submodel size (number of predictor terms) up to
which the search is continued. If |
verbose |
A single logical value indicating whether to print out additional information during the computations. |
search_control |
A
|
lambda_min_ratio |
Deprecated (please use |
nlambda |
Deprecated (please use |
thresh |
Deprecated (please use |
penalty |
Only relevant for L1 search. A numeric vector determining the
relative penalties or costs for the predictors. A value of |
search_terms |
Only relevant for forward search. A custom character
vector of predictor term blocks to consider for the search. Section
"Details" below describes more precisely what "predictor term block" means.
The intercept ( |
search_out |
Intended for internal use. |
seed |
Pseudorandom number generation (PRNG) seed by which the same
results can be obtained again if needed. Passed to argument |
Details
Arguments ndraws
, nclusters
, nclusters_pred
, and ndraws_pred
are automatically truncated at the number of posterior draws in the
reference model (which is 1
for datafit
s). Using less draws or clusters
in ndraws
, nclusters
, nclusters_pred
, or ndraws_pred
than posterior
draws in the reference model may result in slightly inaccurate projection
performance. Increasing these arguments affects the computation time
linearly.
For argument method
, there are some restrictions: For a reference model
with multilevel or additive formula terms or a reference model set up for
the augmented-data projection, only the forward search is available.
Furthermore, argument search_terms
requires a forward search to take
effect.
L1 search is faster than forward search, but forward search may be more accurate. Furthermore, forward search may find a sparser model with comparable performance to that found by L1 search, but it may also start overfitting when more predictors are added.
An L1 search may select an interaction term before all involved lower-order interaction terms (including main-effect terms) have been selected. In projpred versions > 2.6.0, the resulting predictor ranking is automatically modified so that the lower-order interaction terms come before this interaction term, but if this is conceptually undesired, choose the forward search instead.
The elements of the search_terms
character vector don't need to be
individual predictor terms. Instead, they can be building blocks consisting
of several predictor terms connected by the +
symbol. To understand how
these building blocks work, it is important to know how projpred's
forward search works: It starts with an empty vector chosen
which will
later contain already selected predictor terms. Then, the search iterates
over model sizes j \in \{0, ..., J\}
(with J
denoting the maximum submodel size, not counting the intercept). The
candidate models at model size j
are constructed from those elements
from search_terms
which yield model size j
when combined with the
chosen
predictor terms. Note that sometimes, there may be no candidate
models for model size j
. Also note that internally, search_terms
is
expanded to include the intercept ("1"
), so the first step of the search
(model size 0) always consists of the intercept-only model as the only
candidate.
As a search_terms
example, consider a reference model with formula y ~ x1 + x2 + x3
. Then, to ensure that x1
is always included in the
candidate models, specify search_terms = c("x1", "x1 + x2", "x1 + x3", "x1 + x2 + x3")
(or, in a simpler way that leads to the same results,
search_terms = c("x1", "x1 + x2", "x1 + x3")
, for which helper function
force_search_terms()
exists). This search would start with y ~ 1
as the
only candidate at model size 0. At model size 1, y ~ x1
would be the only
candidate. At model size 2, y ~ x1 + x2
and y ~ x1 + x3
would be the
two candidates. At the last model size of 3, y ~ x1 + x2 + x3
would be
the only candidate. As another example, to exclude x1
from the search,
specify search_terms = c("x2", "x3", "x2 + x3")
(or, in a simpler way
that leads to the same results, search_terms = c("x2", "x3")
).
Value
An object of class vsel
. The elements of this object are not meant
to be accessed directly but instead via helper functions (see the main
vignette and projpred-package).
Argument d_test
If not NULL
, then d_test
needs to be a list
with the following
elements:
-
data
: adata.frame
containing the predictor variables for the test set. -
offset
: a numeric vector containing the offset values for the test set (if there is no offset, use a vector of zeros). -
weights
: a numeric vector containing the observation weights for the test set (if there are no observation weights, use a vector of ones). -
y
: a vector or afactor
containing the response values for the test set. In case of the latent projection, this has to be a vector containing the latent response values, but it can also be a vector full ofNA
s if latent-scale post-processing is not needed. -
y_oscale
: Only needs to be provided in case of the latent projection where this needs to be a vector or afactor
containing the original (i.e., non-latent) response values for the test set.
See Also
Examples
# Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)
# The `stanreg` fit which will be used as the reference model (with small
# values for `chains` and `iter`, but only for technical reasons in this
# example; this is not recommended in general):
fit <- rstanarm::stan_glm(
y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)
# Run varsel() (here without cross-validation, with L1 search, and with small
# values for `nterms_max` and `nclusters_pred`, but only for the sake of
# speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,
seed = 5555)
# Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
# and `?ranking` for possible post-processing functions.