refmodel-init-get {projpred} | R Documentation |
Reference model and more general information
Description
Function get_refmodel()
is a generic function whose methods usually call
init_refmodel()
which is the underlying workhorse (and may also be used
directly without a call to get_refmodel()
).
Both, get_refmodel()
and init_refmodel()
, create an object containing
information needed for the projection predictive variable selection, namely
about the reference model, the submodels, and how the projection should be
carried out. For the sake of simplicity, the documentation may refer to the
resulting object also as "reference model" or "reference model object", even
though it also contains information about the submodels and the projection.
A "typical" reference model object is created by get_refmodel.stanreg()
and
brms::get_refmodel.brmsfit()
, either implicitly by a call to a top-level
function such as project()
, varsel()
, and cv_varsel()
or explicitly by
a call to get_refmodel()
. All non-"typical" reference model objects will be
called "custom" reference model objects.
Some arguments are for K
-fold cross-validation (K
-fold CV) only;
see cv_varsel()
for the use of K
-fold CV in projpred.
Usage
get_refmodel(object, ...)
## S3 method for class 'refmodel'
get_refmodel(object, ...)
## S3 method for class 'vsel'
get_refmodel(object, ...)
## S3 method for class 'projection'
get_refmodel(object, ...)
## Default S3 method:
get_refmodel(object, family = NULL, ...)
## S3 method for class 'stanreg'
get_refmodel(object, latent = FALSE, dis = NULL, ...)
init_refmodel(
object,
data,
formula,
family,
ref_predfun = NULL,
div_minimizer = NULL,
proj_predfun = NULL,
extract_model_data = NULL,
cvfun = NULL,
cvfits = NULL,
dis = NULL,
cvrefbuilder = NULL,
called_from_cvrefbuilder = FALSE,
...
)
Arguments
object |
For |
... |
For |
family |
An object of class |
latent |
A single logical value indicating whether to use the latent
projection ( |
dis |
A vector of posterior draws for the reference model's dispersion
parameter or—more precisely—the posterior values for the reference
model's parameter-conditional predictive variance (assuming that this
variance is the same for all observations). May be |
data |
A |
formula |
The full formula to use for the search procedure. For custom
reference models, this does not necessarily coincide with the reference
model's formula. For general information about formulas in R, see
|
ref_predfun |
Prediction function for the linear predictor of the
reference model, including offsets (if existing). See also section
"Arguments |
div_minimizer |
A function for minimizing the Kullback-Leibler (KL)
divergence from the reference model to a submodel (i.e., for performing the
projection of the reference model onto a submodel). The output of
|
proj_predfun |
Prediction function for the linear predictor of a
submodel onto which the reference model is projected. See also section
"Arguments |
extract_model_data |
A function for fetching some variables (response,
observation weights, offsets) from the original dataset (supplied to
argument |
cvfun |
For |
cvfits |
For |
cvrefbuilder |
For |
called_from_cvrefbuilder |
A single logical value indicating whether
|
Value
An object that can be passed to all the functions that take the
reference model fit as the first argument, such as varsel()
,
cv_varsel()
, project()
, proj_linpred()
, and proj_predict()
.
Usually, the returned object is of class refmodel
. However, if object
is NULL
, the returned object is of class datafit
as well as of class
refmodel
(with datafit
being first). Objects of class datafit
are
handled differently at several places throughout this package.
The elements of the returned object are not meant to be accessed directly
but instead via downstream functions (see the functions mentioned above as
well as predict.refmodel()
).
Formula terms
Although bad practice (in general), a reference model lacking an intercept can be used within projpred. However, it will always be projected onto submodels which include an intercept. The reason is that even if the true intercept in the reference model is zero, this does not need to hold for the submodels.
In multilevel (group-level) terms, function calls on the right-hand side of
the |
character (e.g., (1 | gr(group_variable))
, which is possible in
brms) are currently not allowed in projpred.
For additive models (still an experimental feature), only mgcv::s()
and
mgcv::t2()
are currently supported as smooth terms. Furthermore, these need
to be called without any arguments apart from the predictor names (symbols).
For example, for smoothing the effect of a predictor x
, only s(x)
or
t2(x)
are allowed. As another example, for smoothing the joint effect of
two predictors x
and z
, only s(x, z)
or t2(x, z)
are allowed (and
analogously for higher-order joint effects, e.g., of three predictors). Note
that all smooth terms need to be included in formula
(there is no random
argument as in rstanarm::stan_gamm4()
, for example).
Arguments ref_predfun
, proj_predfun
, and div_minimizer
Arguments ref_predfun
, proj_predfun
, and div_minimizer
may be NULL
for using an internal default (see projpred-package for the functions used
by the default divergence minimizers). Otherwise, let N
denote the
number of observations (in case of CV, these may be reduced to each fold),
S_{\mathrm{ref}}
the number of posterior draws for the reference
model's parameters, and S_{\mathrm{prj}}
the number of draws for
the parameters of a submodel that the reference model has been projected onto
(short: the number of projected draws). For the augmented-data projection,
let C_{\mathrm{cat}}
denote the number of response categories,
C_{\mathrm{lat}}
the number of latent response categories (which
typically equals C_{\mathrm{cat}} - 1
), and define
N_{\mathrm{augcat}} := N \cdot C_{\mathrm{cat}}
as well as N_{\mathrm{auglat}} := N \cdot C_{\mathrm{lat}}
. Then the functions supplied to these arguments need to have the
following prototypes:
-
ref_predfun
:ref_predfun(fit, newdata = NULL)
where:-
fit
accepts the reference model fit as given in argumentobject
(but possibly refitted to a subset of the observations, as done inK
-fold CV). -
newdata
accepts eitherNULL
(for using the original dataset, typically stored infit
) or data for new observations (at least in the form of adata.frame
).
-
-
proj_predfun
:proj_predfun(fits, newdata)
where:-
fits
accepts alist
of lengthS_{\mathrm{prj}}
containing this number of submodel fits. Thislist
is the same as that returned byproject()
in its output elementoutdmin
(which in turn is the same as the return value ofdiv_minimizer
, except ifproject()
was used with anobject
of classvsel
based on an L1 search as well as withrefit_prj = FALSE
). -
newdata
accepts data for new observations (at least in the form of adata.frame
).
-
-
div_minimizer
does not need to have a specific prototype, but it needs to be able to be called with the following arguments:-
formula
accepts either a standardformula
with a single response (ifS_{\mathrm{prj}} = 1
or in case of the augmented-data projection) or aformula
withS_{\mathrm{prj}} > 1
response variablescbind()
-ed on the left-hand side in which case the projection has to be performed for each of the response variables separately. -
data
accepts adata.frame
to be used for the projection. In case of the traditional or the latent projection, this dataset hasN
rows. In case of the augmented-data projection, this dataset hasN_{\mathrm{augcat}}
rows. -
family
accepts an object of classfamily
. -
weights
accepts either observation weights (at least in the form of a numeric vector) orNULL
(for using a vector of ones as weights). -
projpred_var
accepts anN \times S_{\mathrm{prj}}
matrix of predictive variances (necessary for projpred's internal GLM fitter) in case of the traditional or the latent projection and anN_{\mathrm{augcat}} \times S_{\mathrm{prj}}
matrix (containing onlyNA
s) in case of the augmented-data projection. -
projpred_ws_aug
accepts anN \times S_{\mathrm{prj}}
matrix of expected values for the response in case of the traditional or the latent projection and anN_{\mathrm{augcat}} \times S_{\mathrm{prj}}
matrix of probabilities for the response categories in case of the augmented-data projection. -
...
accepts further arguments specified by the user (or by projpred).
-
The return value of these functions needs to be:
-
ref_predfun
: for the traditional or the latent projection, anN \times S_{\mathrm{ref}}
matrix; for the augmented-data projection, anS_{\mathrm{ref}} \times N \times C_{\mathrm{lat}}
array (the only exception is the augmented-data projection for thebinomial()
family in which caseref_predfun
needs to return anN \times S_{\mathrm{ref}}
matrix just like for the traditional projection because the array is constructed by an internal wrapper function). -
proj_predfun
: for the traditional or the latent projection, anN \times S_{\mathrm{prj}}
matrix; for the augmented-data projection, anN \times C_{\mathrm{lat}} \times S_{\mathrm{prj}}
array. -
div_minimizer
: alist
of lengthS_{\mathrm{prj}}
containing this number of submodel fits.
Argument extract_model_data
The function supplied to argument extract_model_data
needs to have the
prototype
extract_model_data(object, newdata, wrhs = NULL, orhs = NULL, extract_y = TRUE)
where:
-
object
accepts the reference model fit as given in argumentobject
(but possibly refitted to a subset of the observations, as done inK
-fold CV). -
newdata
accepts data for new observations (at least in the form of adata.frame
). -
wrhs
accepts at least (i) a right-hand side formula consisting only of the variable innewdata
containing the observation weights or (ii)NULL
for using the observation weights corresponding tonewdata
(typically, the observation weights are stored in a column ofnewdata
; if the model was fitted without observation weights, a vector of ones should be used). -
orhs
accepts at least (i) a right-hand side formula consisting only of the variable innewdata
containing the offsets or (ii)NULL
for using the offsets corresponding tonewdata
(typically, the offsets are stored in a column ofnewdata
; if the model was fitted without offsets, a vector of zeros should be used). -
extract_y
accepts a single logical value indicating whether output elementy
(see below) shall beNULL
(TRUE
) or not (FALSE
).
The return value of extract_model_data
needs to be a list
with elements
y
, weights
, and offset
, each being a numeric vector containing the data
for the response, the observation weights, and the offsets, respectively. An
exception is that y
may also be NULL
(depending on argument extract_y
),
a non-numeric vector, or a factor
.
The weights and offsets returned by extract_model_data
will be assumed to
hold for the reference model as well as for the submodels.
Above, arguments wrhs
and orhs
were assumed to have defaults of NULL
.
It should be possible to use defaults other than NULL
, but we strongly
recommend to use NULL
. If defaults other than NULL
are used, they need to
imply the behaviors described at items "(ii)" (see the descriptions of wrhs
and orhs
).
Augmented-data projection
If a custom reference model for an augmented-data projection is needed, see
also extend_family()
.
For the augmented-data projection, the response vector resulting from
extract_model_data
is internally coerced to a factor
(using
as.factor()
). The levels of this factor
have to be identical to
family$cats
(after applying extend_family()
internally; see
extend_family()
's argument augdat_y_unqs
).
Note that response-specific offsets (i.e., one length-N
offset vector
per response category) are not supported by projpred yet. So far, only
offsets which are the same across all response categories are supported. This
is why in case of the brms::categorical()
family, offsets are currently not
supported at all.
Currently, object = NULL
(i.e., a datafit
; see section "Value") is not
supported in case of the augmented-data projection.
Latent projection
If a custom reference model for a latent projection is needed, see also
extend_family()
.
For the latent projection, family$cats
(after applying extend_family()
internally; see extend_family()
's argument latent_y_unqs
) currently must
not be NULL
if the original (i.e., non-latent) response is a factor
.
Conversely, if family$cats
(after applying extend_family()
) is
non-NULL
, the response vector resulting from extract_model_data
is
internally coerced to a factor
(using as.factor()
). The levels of this
factor
have to be identical to that non-NULL
element family$cats
.
Currently, object = NULL
(i.e., a datafit
; see section "Value") is not
supported in case of the latent projection.
Examples
# Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)
# The `stanreg` fit which will be used as the reference model (with small
# values for `chains` and `iter`, but only for technical reasons in this
# example; this is not recommended in general):
fit <- rstanarm::stan_glm(
y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876
)
# Define the reference model object explicitly:
ref <- get_refmodel(fit)
print(class(ref)) # gives `"refmodel"`
# Now see, for example, `?varsel`, `?cv_varsel`, and `?project` for
# possible post-processing functions. Most of the post-processing functions
# call get_refmodel() internally at the beginning, so you will rarely need
# to call get_refmodel() yourself.
# A custom reference model object which may be used in a variable selection
# where the candidate predictors are not a subset of those used for the
# reference model's predictions:
ref_cust <- init_refmodel(
fit,
data = dat_gauss,
formula = y ~ X6 + X7,
family = gaussian(),
cvfun = function(folds) {
kfold(
fit, K = max(folds), save_fits = TRUE, folds = folds, cores = 1
)$fits[, "fit"]
},
dis = as.matrix(fit)[, "sigma"],
cvrefbuilder = function(cvfit) {
init_refmodel(cvfit,
data = dat_gauss[-cvfit$omitted, , drop = FALSE],
formula = y ~ X6 + X7,
family = gaussian(),
dis = as.matrix(cvfit)[, "sigma"],
called_from_cvrefbuilder = TRUE)
}
)
# Now, the post-processing functions mentioned above (for example,
# varsel(), cv_varsel(), and project()) may be applied to `ref_cust`.