panelSim {prodest} | R Documentation |
Simulate Panel dataset
Description
panelSim()
produces a N*T balanced panel dataset of firms' production. In particular, it returns a data.frame
with free, state and proxy variables aimed at performing Monte Carlo simulations on productivity-related models.
Usage
panelSim(N = 1000, T = 100, alphaL = .6, alphaK = .4, DGP = 1,
rho = .7, sigeps = .1, sigomg = .3, rholnw = .3)
Arguments
N |
the number of firms. By default |
T |
the total time span to be simulated. Only a fraction (the last 10% of observations) will be returned. By default |
alphaL |
the parameter of the free variable. By default |
alphaK |
the parameter of the state variable. By default |
DGP |
Type of DGP; accepts 1, 2 or 3. They differ in terms of shock to wages (0 or 0.1), |
rho |
the AR(1) coefficient for omega. By default |
sigeps |
the standard deviation of epsilon. See |
sigomg |
the standard deviation of the innovation to productivity |
rholnw |
AR(1) coefficient for log(wage). By default |
Details
panelSim()
is the R implementation of the DGP written by Ackerberg, Caves and Frazer (2015).
Value
panelSim()
returns a data.frame
with 7 variables:
idvar
ID codes from 1 to N (by defaultN = 1000
).timevar
time variable ranging 1 toround(T*0.1)
(by defaultT = 100
andmax(timevar) = 10
).Y
log output value added variablesX
log state variablefX
log free variablepX1
log proxy variable - no measurement errorpX2
log proxy variable -\sigma_{measurementerror}= .1
pX3
log proxy variable -\sigma_{measurementerror}= .2
pX4
log proxy variable -\sigma_{measurementerror}= .5
Author(s)
Gabriele Rovigatti
References
Ackerberg, D., Caves, K. and Frazer, G. (2015). "Identification properties of recent production function estimators." Econometrica, 83(6), 2411-2451.
Examples
require(prodest)
## Simulate a dataset with 100 firms (T = 50).
## \code{Panelsim()} delivers the last 10% of usable time per panel.
panel.data <- panelSim(N = 100, T = 50)
attach(panel.data)
## Estimate various models
ACF.fit <- prodestACF(Y, fX, sX, pX2, idvar, timevar, theta0 = c(.5,.5))
LP.fit <- prodestLP(Y, fX, sX, pX2, idvar, timevar)
WRDG.fit <- prodestWRDG(Y, fX, sX, pX3, idvar, timevar)
## print results in lateX tabular format
printProd(list(LP.fit, ACF.fit, WRDG.fit))