lhmm {proclhmm} | R Documentation |
MMLE of LHMM
Description
Maximum marginalized likelihood estimation of LHMM.
Marginalization over latent trait is computed numerically using Guassian-Hermite quadratures from statmod
.
Optimization is performed through optim
.
Usage
lhmm(action_seqs, K, paras, n_pts = 100, verbose = TRUE, ...)
Arguments
action_seqs |
a list of |
K |
number of hidden states |
paras |
a list of elements named |
n_pts |
number of quadrature points |
verbose |
logical. If |
... |
additional arguments passed to |
Value
A list containing the following elements
seqs | action sequences coded in integers |
K | number of hidden states |
N | number of distinct actions |
paras_init | a list containing initial values of parameters |
paras_est | a list containing parameter estimates |
theta_est | a vector of length n . estimated latent traits |
init_mllh | initial value of the marginalized likelihood function |
opt_mllh | maximized marginalized likelihood function |
opt_res | object returned by optim |
Examples
# generate data
paras_true <- sim_lhmm_paras(5, 2)
sim_data <- sim_lhmm(10, paras_true, 3, 5)
# randomly initialize parameters
paras_init <- sim_lhmm_paras(5, 2)
# fit model
lhmm_res <- lhmm(sim_data$seqs, 2, paras_init)
[Package proclhmm version 1.0.0 Index]