e_step_func {probe} | R Documentation |
Function for fitting the empirical Bayes portion of the E-step
Description
A wrapper function estimating posterior expectations of the variables using an empirical Bayesian technqiue.
Usage
e_step_func(beta_t, beta_var, df, adj = 5, lambda = 0.1, monotone = TRUE)
Arguments
beta_t |
Expectation of the posterior mean (assuming |
beta_var |
Current posterior variance (assuming |
df |
Degrees of freedom for the t-distribution (use to calculate p-values). |
adj |
Bandwidth multiplier to Silverman's ‘rule of thumb’ for calculating the marginal density of the test-statistics (default = 5). |
lambda |
Value of the |
monotone |
Logical - Should the estimated marginal density of the test-statistics be monotone non-increasing from zero (default = TRUE). |
Value
A list including
delta
estimated posterior expectations of the .
pi0
estimated proportion of null hypothesis
References
Storey, J. D., Taylor, J. E., and Siegmund, D. (2004), “Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach,” J. R. Stat. Soc. Ser. B. Stat. Methodol., 66, 187–205. McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.