| e_step_func {probe} | R Documentation |
Function for fitting the empirical Bayes portion of the E-step
Description
A wrapper function estimating posterior expectations of the \gamma variables using an empirical Bayesian technqiue.
Usage
e_step_func(beta_t, beta_var, df, adj = 5, lambda = 0.1, monotone = TRUE)
Arguments
beta_t |
Expectation of the posterior mean (assuming |
beta_var |
Current posterior variance (assuming |
df |
Degrees of freedom for the t-distribution (use to calculate p-values). |
adj |
Bandwidth multiplier to Silverman's ‘rule of thumb’ for calculating the marginal density of the test-statistics (default = 5). |
lambda |
Value of the |
monotone |
Logical - Should the estimated marginal density of the test-statistics be monotone non-increasing from zero (default = TRUE). |
Value
A list including
delta estimated posterior expectations of the \gamma.
pi0 estimated proportion of null hypothesis
References
Storey, J. D., Taylor, J. E., and Siegmund, D. (2004), “Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach,” J. R. Stat. Soc. Ser. B. Stat. Methodol., 66, 187–205. McLain, A. C., Zgodic, A., & Bondell, H. (2022). Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:2209.08139.