cal_estimate_isotonic_boot {probably} | R Documentation |
Uses a bootstrapped Isotonic regression model to calibrate probabilities
Description
Uses a bootstrapped Isotonic regression model to calibrate probabilities
Usage
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
times = 10,
parameters = NULL,
...
)
## S3 method for class 'data.frame'
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
times = 10,
parameters = NULL,
...,
.by = NULL
)
## S3 method for class 'tune_results'
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
times = 10,
parameters = NULL,
...
)
## S3 method for class 'grouped_df'
cal_estimate_isotonic_boot(
.data,
truth = NULL,
estimate = NULL,
times = 10,
parameters = NULL,
...
)
Arguments
.data |
An ungrouped |
truth |
The column identifier for the true class results (that is a factor). This should be an unquoted column name. |
estimate |
A vector of column identifiers, or one of |
times |
Number of bootstraps. |
parameters |
(Optional) An optional tibble of tuning parameter values
that can be used to filter the predicted values before processing. Applies
only to |
... |
Additional arguments passed to the models or routines used to calculate the new probabilities. |
.by |
The column identifier for the grouping variable. This should be
a single unquoted column name that selects a qualitative variable for
grouping. Default to |
Details
This function uses stats::isoreg()
to create obtain the calibration
values. It runs stats::isoreg()
multiple times, and each time with a different
seed. The results are saved inside the returned cal_object
.
Multiclass Extension
This method is designed to work with two classes. For multiclass, it creates a set of "one versus all" calibrations for each class. After they are applied to the data, the probability estimates are re-normalized to add to one. This final step might compromise the calibration.
See Also
https://www.tidymodels.org/learn/models/calibration/,
cal_validate_isotonic_boot()
Examples
# It will automatically identify the probability columns
# if passed a model fitted with tidymodels
cal_estimate_isotonic_boot(segment_logistic, Class)
# Specify the variable names in a vector of unquoted names
cal_estimate_isotonic_boot(segment_logistic, Class, c(.pred_poor, .pred_good))
# dplyr selector functions are also supported
cal_estimate_isotonic_boot(segment_logistic, Class, dplyr::starts_with(".pred"))