cal_estimate_beta {probably} | R Documentation |
Uses a Beta calibration model to calculate new probabilities
Description
Uses a Beta calibration model to calculate new probabilities
Usage
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = dplyr::starts_with(".pred_"),
parameters = NULL,
...
)
## S3 method for class 'data.frame'
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = dplyr::starts_with(".pred_"),
parameters = NULL,
...,
.by = NULL
)
## S3 method for class 'tune_results'
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = dplyr::starts_with(".pred_"),
parameters = NULL,
...
)
## S3 method for class 'grouped_df'
cal_estimate_beta(
.data,
truth = NULL,
shape_params = 2,
location_params = 1,
estimate = NULL,
parameters = NULL,
...
)
Arguments
.data |
An ungrouped |
truth |
The column identifier for the true class results (that is a factor). This should be an unquoted column name. |
shape_params |
Number of shape parameters to use. Accepted values are 1 and 2. Defaults to 2. |
location_params |
Number of location parameters to use. Accepted values 1 and 0. Defaults to 1. |
estimate |
A vector of column identifiers, or one of |
parameters |
(Optional) An optional tibble of tuning parameter values
that can be used to filter the predicted values before processing. Applies
only to |
... |
Additional arguments passed to the models or routines used to calculate the new probabilities. |
.by |
The column identifier for the grouping variable. This should be
a single unquoted column name that selects a qualitative variable for
grouping. Default to |
Details
This function uses the betacal::beta_calibration()
function, and
retains the resulting model.
Multiclass Extension
This method is designed to work with two classes. For multiclass, it creates a set of "one versus all" calibrations for each class. After they are applied to the data, the probability estimates are re-normalized to add to one. This final step might compromise the calibration.
References
Meelis Kull, Telmo M. Silva Filho, Peter Flach "Beyond sigmoids: How to obtain well-calibrated probabilities from binary classifiers with beta calibration," Electronic Journal of Statistics 11(2), 5052-5080, (2017)
See Also
https://www.tidymodels.org/learn/models/calibration/,
cal_validate_beta()
Examples
# It will automatically identify the probability columns
# if passed a model fitted with tidymodels
cal_estimate_beta(segment_logistic, Class)