| OptimizationProblem-methods {prioritizr} | R Documentation |
Optimization problem methods
Description
These functions are used to access data from a optimization_problem().
Usage
## S4 method for signature 'OptimizationProblem'
nrow(x)
## S4 method for signature 'OptimizationProblem'
ncol(x)
## S4 method for signature 'OptimizationProblem'
ncell(x)
modelsense(x)
## S4 method for signature 'OptimizationProblem'
modelsense(x)
vtype(x)
## S4 method for signature 'OptimizationProblem'
vtype(x)
obj(x)
## S4 method for signature 'OptimizationProblem'
obj(x)
A(x)
## S4 method for signature 'OptimizationProblem'
A(x)
rhs(x)
## S4 method for signature 'OptimizationProblem'
rhs(x)
sense(x)
## S4 method for signature 'OptimizationProblem'
sense(x)
lb(x)
## S4 method for signature 'OptimizationProblem'
lb(x)
ub(x)
## S4 method for signature 'OptimizationProblem'
ub(x)
col_ids(x)
## S4 method for signature 'OptimizationProblem'
col_ids(x)
row_ids(x)
## S4 method for signature 'OptimizationProblem'
row_ids(x)
compressed_formulation(x)
## S4 method for signature 'OptimizationProblem'
compressed_formulation(x)
Arguments
x |
|
Details
The functions return the following data:
- nrow
integernumber of rows (constraints).- ncol
integernumber of columns (decision variables).- ncell
integernumber of cells.- modelsense
characterdescribing if the problem is to be maximized ("max") or minimized ("min").- vtype
characterdescribing the type of each decision variable: binary ("B"), semi-continuous ("S"), or continuous ("C")- obj
numericvector specifying the objective function.- A
dgCMatrixmatrix object defining the problem matrix.- rhs
numericvector with right-hand-side linear constraints- sense
charactervector with the senses of the linear constraints ("<=",">=","=").- lb
numericlower bound for each decision variable. Missing data values (NA) indicate no lower bound for a given variable.- ub
numericupper bounds for each decision variable. Missing data values (NA) indicate no upper bound for a given variable.- number_of_planning_units
integernumber of planning units in the problem.- number_of_features
integernumber of features the problem.
Value
A dgCMatrix, numeric vector,
numeric vector, or scalar integer depending on the method
used.