SIRmod {primer} | R Documentation |
The S-I-R Epidemilogical Disease Model
Description
The S-I-R epidemiological disease model with births and deaths (population
dynamics), for use with ode
in the deSolve
package. This
model uses scaled transmission, where z controls the degree of density- and frequency-dependence.
Usage
SIRmod(t, y, p)
Arguments
t |
times points for which values will be returned |
y |
the vector of disease states of hosts (S, I, R) |
p |
a vector of parameters |
Details
The user does not put these directly into this function, but rather uses
ode
in the deSolve
package.
Value
Returns of list of one component (required by ode
).
Author(s)
Hank Stevens <Hank.Stevens@miamioh.edu>
References
Ellner, S.P. and Guckenheimer, J. (2006) Dynamic Models in Biology, Princeton University Press.
Kermack, W.O. and McCormick, W.G. (1927) A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society, Series A, 115, 700–721.
Stevens, M.H.H. (2009) A Primer of Ecology with R, Use R! Series. Springer.
See Also
Examples
library(deSolve)
N <- 10^6; R <- 0; I <- 1; S <- N - I - R
g <- 1/(13/365); b <- 1/50; z <- 0;
age <- 5; R0 <- 1 + 1/(b*age)
B <- R0 * (g + b) / N
parms <- c(B = B, g = g, b = b, mu=b)
years <- seq(0,30, by=.1)
SIR.out <- data.frame(ode(c(S=S,I=I,R=R), years, SIRmod, parms, hmax=.01))
matplot(SIR.out[,1], sqrt(SIR.out[,-1]), type='l',
lty=1:3, ylab="sqrt(No. of Individuals)", xlab='Years')
legend('right', c('S','I','R'), lty=1:3, col=1:3, bty='n')