prim.box {prim} | R Documentation |
PRIM for multivariate data
Description
PRIM for multivariate data.
Usage
prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01,
mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE,
threshold.type=0, y.fun=mean)
prim.hdr(prim, threshold, threshold.type, y.fun=mean)
prim.combine(prim1, prim2, y.fun=mean)
Arguments
x |
matrix of data values |
y |
vector of response values |
y.fun |
function applied to response y. Default is mean. |
box.init |
initial covering box |
peel.alpha |
peeling quantile tuning parameter |
paste.alpha |
pasting quantile tuning parameter |
mass.min |
minimum mass tuning parameter |
threshold |
threshold tuning parameter(s) |
threshold.type |
threshold direction indicator: 1 = ">= threshold", -1 = "<= threshold", 0 = ">= threshold[1] & <= threshold[2]" |
pasting |
flag for pasting |
verbose |
flag for printing output during execution |
prim , prim1 , prim2 |
objects of type |
Details
The data are (\bold{X}_1, Y_1), \dots, (\bold{X}_n, Y_n)
where \bold{X}_i
is d-dimensional and Y_i
is a
scalar response. PRIM finds modal (and/or anti-modal) regions in the
conditional expectation m(\bold{x}) = \bold{E} (Y | \bold{x}).
In general, Y_i
can be real-valued. See
vignette("prim")
.
Here, we focus on the special case for binary Y_i
. Let
Y_i
= 1 when
\bold{X}_i \sim F^+
; and Y_i
= -1 when
\bold{X}_i \sim
F^-
where F^+
and F^-
are different
distribution functions. In this set-up, PRIM finds the
regions where F^+
and F^-
are most different.
The tuning parameters peel.alpha
and paste.alpha
control
the ‘patience’ of PRIM. Smaller values involve more patience. Larger
values less patience. The peeling steps remove data from a box till
either the box mean is smaller than threshold
or the box mass
is less than mass.min
. Pasting is optional, and is used to correct any
possible over-peeling. The default values for peel.alpha
,
paste.alpha
and mass.min
are taken from Friedman &
Fisher (1999).
The type of PRIM estimate is controlled threshold
and
threshold.type
:
threshold.type=1
, search for {m(\bold{x}) \geq
threshold
}.threshold.type=-1
, search for {m(\bold{x}) \leq
threshold
}.threshold.type=0
, search for both {m(\bold{x}) \geq
threshold[1]
} and {m(\bold{x}) \leq
threshold[2]
}.
There are two ways of using PRIM. One is prim.box
with
pre-specified threshold(s). This is appropriate when the threshold(s)
are known to produce good estimates.
On the other hand, if the user doesn't provide threshold values then
prim.box
computes box sequences which cover the data
range. These can then be pruned at a later stage. prim.hdr
allows the user to specify many different threshold values in an
efficient manner, without having to recomputing the entire PRIM box
sequence. prim.combine
can be used to join the regions computed
from prim.hdr
. See the examples below.
Value
– prim.box
produces a PRIM estimate, an object of
type prim
, which is a list with 8 fields:
x |
list of data matrices |
y |
list of response variable vectors |
y.mean |
list of vectors of box mean for y |
box |
list of matrices of box limits (first row = minima, second row = maxima) |
mass |
vector of box masses (proportion of points inside a box) |
num.class |
total number of PRIM boxes |
num.hdr.class |
total number of PRIM boxes which form the HDR |
ind |
threshold direction indicator: 1 = ">= threshold", -1 = "<=threshold" |
The above lists have num.class
fields, one for each box.
– prim.hdr
takes a prim
object and prunes it using
different threshold values. Returns another prim
object. This
is much faster for experimenting with different threshold values than
calling prim.box
each time.
– prim.combine
combines two prim
objects into a single
prim object. Usually used in conjunction with prim.hdr
. See examples below.
Examples
data(quasiflow)
qf <- quasiflow[1:1000,1:2]
qf.label <- quasiflow[1:1000,4]
## using only one command
thr <- c(0.25, -0.3)
qf.prim1 <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0)
## alternative - requires more commands but allows more control
## in intermediate stages
qf.primp <- prim.box(x=qf, y=qf.label, threshold.type=1)
## default threshold too low, try higher one
qf.primp.hdr <- prim.hdr(prim=qf.primp, threshold=0.25, threshold.type=1)
qf.primn <- prim.box(x=qf, y=qf.label, threshold=-0.3, threshold.type=-1)
qf.prim2 <- prim.combine(qf.primp.hdr, qf.primn)
plot(qf.prim1, alpha=0.2) ## orange=x1>x2, blue x2<x1
points(qf[qf.label==1,], cex=0.5)
points(qf[qf.label==-1,], cex=0.5, col=2)