simulate_incidence_stats {prevtoinc} | R Documentation |
Calculate theoretical values like x.los, x.loi and other characteristics of the patient population
Description
Calculate theoretical values like x.los, x.loi and other characteristics of the patient population
Usage
simulate_incidence_stats(hospital, steps = 365 * 10000,
n.sim.pat = 5000)
Arguments
hospital |
type of hospital as a list-object (see vignette for details) |
steps |
number of steps to evolve process |
n.sim.pat |
size of simulations to estimate individual characteristics of patients |
Value
list with following components
x.los - average length of stay x_los
x.loi - average length of infection x_loi
x.los.noso.only - average length of stay for patients with HAI
x.los.wo.noso - average length of stay for patients discounting time with HAI
I - theoretical incidence rate per patient day
I.pp - list of theoretical incidences for patient types
patient.stats - list with 'x.los' and 'x.loi' for different patient types
patient.risk.times - list of patient days at risk for different patient types
Examples
pat.1 <- list(dist.X.los = create_dist_vec(
function(x) dpois(x-1, lambda = 12), 70),
I.p = 0.008,
dist.X.loi = create_dist_vec(function(x) dpois(x-1, lambda = 10), 70))
pat.2 <- list(dist.X.los =
create_dist_vec(function(x) dpois(x-1, lambda = 10), 70),
I.p = 0.02,
dist.X.loi =
create_dist_vec(function(x) dpois(x-1, lambda = 7), 70))
patient.list <- list(pat.1, pat.2)
# define distribution of patients
pat.1.prob <- 0.4; pat.2.prob <- 0.6
pat.dist.hosp <- c(pat.1.prob, pat.2.prob)
hospital.1 <- list(inc.factor = 1,
pat.dist = pat.dist.hosp,
patient.list = patient.list)
data.pps <- simulate_pps_data(n.sample=1000, steps=200, hospital=hospital.1)
data.inc.theo <- simulate_incidence_stats(hospital.1, 365 * 1000)
# gives incidence rate I
data.inc.theo$I
# gives incidence proportion per admission
data.inc.theo$I.pp