actual_expected_bucketed {prettyglm} | R Documentation |
actual_expected_bucketed
Description
Provides a rank plot of the actual and predicted.
Usage
actual_expected_bucketed(
target_variable,
model_object,
data_set = NULL,
number_of_buckets = 25,
ylab = "Target",
width = 800,
height = 500,
first_colour = "black",
second_colour = "#cc4678",
facetby = NULL,
prediction_type = "response",
predict_function = NULL,
return_data = F
)
Arguments
target_variable |
String of target variable name. |
model_object |
GLM model object. |
data_set |
Data to score the model on. This can be training or test data, as long as the data is in a form where the model object can make predictions. Currently developing ability to provide custom prediction functions, currently implementation defaults to 'stats::predict' |
number_of_buckets |
number of buckets for percentile |
ylab |
Y-axis label. |
width |
plotly plot width in pixels. |
height |
plotly plot height in pixels. |
first_colour |
First colour to plot, usually the colour of actual. |
second_colour |
Second colour to plot, usually the colour of predicted. |
facetby |
variable user wants to facet by. |
prediction_type |
Prediction type to be pasted to predict.glm if predict_function is NULL. Defaults to "response". |
predict_function |
prediction function to use. Still in development. |
return_data |
Logical to return cleaned data set instead of plot. |
Value
plot Plotly plot by defualt. ggplot if plotlyplot = F. Tibble if return_data = T.
Examples
library(dplyr)
library(prettyglm)
data('titanic')
columns_to_factor <- c('Pclass',
'Sex',
'Cabin',
'Embarked',
'Cabintype',
'Survived')
meanage <- base::mean(titanic$Age, na.rm=TRUE)
titanic <- titanic %>%
dplyr::mutate_at(columns_to_factor, list(~factor(.))) %>%
dplyr::mutate(Age =base::ifelse(is.na(Age)==TRUE,meanage,Age)) %>%
dplyr::mutate(Age_0_25 = prettyglm::splineit(Age,0,25),
Age_25_50 = prettyglm::splineit(Age,25,50),
Age_50_120 = prettyglm::splineit(Age,50,120)) %>%
dplyr::mutate(Fare_0_250 = prettyglm::splineit(Fare,0,250),
Fare_250_600 = prettyglm::splineit(Fare,250,600))
survival_model <- stats::glm(Survived ~
Sex:Age +
Fare +
Embarked +
SibSp +
Parch +
Cabintype,
data = titanic,
family = binomial(link = 'logit'))
prettyglm::actual_expected_bucketed(target_variable = 'Survived',
model_object = survival_model,
data_set = titanic)