llbt.fit {prefmod} | R Documentation |
Function to fit an LLBT
Description
Function to fit an LLBT using an ELIMINATE feature
Usage
llbt.fit(y, Xmodel, q, ncat, maxiter = 100)
Arguments
y |
response, usually counts |
Xmodel |
design matrix |
q |
number of parameters to eliminate (usually number of comparisons times number of subject covariate levels |
ncat |
number of response categories |
maxiter |
maximum number of iterations (default 100) |
Details
Be careful when specifying the design matrix. Since there is no extrinsic aliasing the matrix must have full rank. Usually, one of the design columns for object must be left out.
Author(s)
Reinhold Hatzinger
References
Hatzinger, R., & Francis, B. (2004). Fitting paired comparison models in R. https://epub.wu.ac.at/id/eprint/740
Examples
# fit basic model casewise
mfr <- llbt.design(cemspc, nitems = 6,
objnames = c("lo", "pa", "mi", "sg", "ba", "st"),
casewise = TRUE)
mm <- model.matrix(~ lo+pa+mi+sg+ba + g1, data = mfr)
X <- mm[, -1]
p <- ncol(X)
ncat <- 3
q <- length(levels(mfr$mu)) * length(levels(mfr$CASE))
llbt.fit(mfr$y, X, q, ncat)
# fit the (aggregated) model with one subject covariate
mfr <- llbt.design(cemspc, nitems = 6,
objnames = c("lo", "pa", "mi", "sg", "ba", "st"),
cov.sel = "ENG")
eng <- mfr$ENG
eng <- factor(eng)
mm <- model.matrix(~ lo+pa+mi+sg+ba + g1 + (lo+pa+mi+sg+ba):eng, data = mfr)
X <- mm[, -1]
q <- length(levels(mfr$mu)) * length(levels(eng))
ncat <- 3
llbt.fit(mfr$y, X, q, ncat)
[Package prefmod version 0.8-36 Index]