pt_from_ss {preference} | R Documentation |
Design Preference Trials with Sample Size Constraint(s)
Description
Create a set of preference trials where the maximum sample size for an arm is specified.
Usage
pt_from_ss(
ss,
pref_effect,
selection_effect,
treatment_effect,
sigma2,
pref_prop,
choice_prop = 0.5,
stratum_prop = 1,
alpha = 0.05,
k = 1
)
Arguments
ss |
the maximum size of any of the three arms. |
pref_effect |
the effect size of the preference arm (delta_pi). |
selection_effect |
the effect size of selection arm (delta_nu). |
treatment_effect |
the sample size of the treatment arm (delta_tau) |
sigma2 |
the variance estimate of the outcome of interest. This value should be positive numeric values. If study is stratified, should be vector of within-stratum variances with length equal to the number of strata in the study. |
pref_prop |
the proportion of patients preferring treatment 1. This value should be between 0 and 1 (phi). |
choice_prop |
the proportion of patients assigned to choice arm in the initial randomization. Should be numeric value between 0 and 1 (default=0.5) (theta). |
stratum_prop |
xi a numeric vector of the proportion of patients in each stratum. Length of vector should equal the number of strata in the study and sum of vector should be 1. All vector elements should be numeric values between 0 and 1. Default is 1 (i.e. unstratified design) (xi). |
alpha |
the desired type I error rate (default 0.05).. |
k |
the ratio of treatment A to treatment B in the random arm (default 1). |
Examples
# Unstratified trials with power constraints.
pt_from_ss(ss=seq(100, 1000, by=100), pref_effect=1,
selection_effect=1, treatment_effect=1, sigma2=1, pref_prop=0.6)
# Stratified trials with power constraints. Note that the proportion
# of patients in the choice arm (choice prop) is fixed for all strata.
pt_from_ss(ss=seq(100, 1000, by=100), pref_effect=1,
selection_effect=1, treatment_effect=1,
sigma2=list(c(1, 0.8)), pref_prop=list(c(0.6, 0.3)),
choice_prop=0.5, stratum_prop=list(c(0.3, 0.7)))
# or...
pt_from_ss(ss=seq(100, 1000, by=100), pref_effect=1,
selection_effect=1, treatment_effect=1,
sigma2=c(1, 0.8), pref_prop=c(0.6, 0.3),
choice_prop=0.5, stratum_prop=c(0.3, 0.7))