createPCAmodelmatrix {predkmeans} | R Documentation |
Create Principal Component Analysis (PCA) scores matrix
Description
Wrapper function for creating PCA scores to be used in a regression analysis.
Usage
createPCAmodelmatrix(
data,
ncomps,
covarnames = colnames(data),
center = TRUE,
scale = TRUE,
matrixonly = TRUE
)
Arguments
data |
Matrix or data frame of data |
ncomps |
Number of PCA components to return. |
covarnames |
Names of variables or column numbers in |
center |
Logical indicator of whether |
scale |
Logical indicator of whether |
matrixonly |
Logical indicator of whether only the model matrix should
be returned, or the full output from |
Details
This is a wrapper around prcomp
, which does
the necessary computation.
Value
If matrixonly=TRUE
, a matrix of PCA scores. Otherwise a list containing two elements: X
, a matrix of scores, and pca
, the output from prcomp
.
Author(s)
Joshua Keller
See Also
createTPRSmodelmatrix
, predkmeansCVest
Examples
n <- 100
d <- 15
X <- matrix(rnorm(n*d), ncol=d, nrow=n)
X <- as.data.frame(X)
mx <- createPCAmodelmatrix(data=X, ncomps=2)
[Package predkmeans version 0.1.1 Index]