| nb_pi {predint} | R Documentation | 
Simple uncalibrated prediction intervals for negative-binomial data
Description
nb_pi() is a helper function that is internally called by  neg_bin_pi(). It
calculates simple uncalibrated prediction intervals for negative-binomial data
with offsets.
Usage
nb_pi(
  newoffset,
  histoffset,
  lambda,
  kappa,
  q = qnorm(1 - 0.05/2),
  alternative = "both",
  newdat = NULL,
  histdat = NULL,
  algorithm = NULL
)
Arguments
| newoffset | number of experimental units in the future clusters | 
| histoffset | number of experimental units in the historical clusters | 
| lambda | overall Poisson mean | 
| kappa | dispersion parameter | 
| q | quantile used for interval calculation | 
| alternative | either "both", "upper" or "lower".
 | 
| newdat | additional argument to specify the current data set | 
| histdat | additional argument to specify the historical data set | 
| algorithm | used to define the algorithm for calibration if called via
 | 
Details
This function returns a simple uncalibrated prediction interval
[l,u]_m = n^*_m \hat{\lambda} \pm q \sqrt{n^*_m
\frac{\hat{\lambda} + \hat{\kappa} \bar{n} \hat{\lambda}}{\bar{n} H} +
(n^*_m \hat{\lambda} + \hat{\kappa} n^{*2}_m \hat{\lambda}^2)
}
with n^*_m as the number of experimental units in m=1, 2, ... , M future clusters,
\hat{\lambda} as the estimate for the Poisson mean obtained from the
historical data, \hat{\kappa} as the estimate for the dispersion parameter,
n_h as the number of experimental units per historical cluster and
\bar{n}=\sum_h^{n_h} n_h / H. 
The direct application of this uncalibrated prediction interval to real life data
is not recommended. Please use the neg_bin_pi() function for real life applications.
Value
np_pi returns an object of class c("predint", "negativeBinomialPI").
Examples
# Prediction interval
nb_pred <- nb_pi(newoffset=3, lambda=3, kappa=0.04, histoffset=1:9, q=qnorm(1-0.05/2))
summary(nb_pred)