permmodels {predictmeans} | R Documentation |
Permutation Test of Linear Model
Description
This function provides permutation t-tests for coefficients of (fixed) effects and permutation F-tests
for the terms in a linear model such as aov
, lm
, glm
, gls
, lme
, and lmer
.
Usage
permmodels(model, nperm=4999, type=c("I", "II", "III", 1, 2, 3),
test.statistic=c("Chisq", "F", "LR", "Wald"), exact=FALSE, data=NULL,
fo=NULL, prt=TRUE, ncore=3, seed)
Arguments
model |
Model object returned by |
nperm |
The number of permutations. The default is 4999. |
type |
type of ANOVA test, "I", "II", "III", 1, 2, or 3. Roman numerals are equivalent to the corresponding Arabic numerals. |
test.statistic |
For type I ANOVA, F test is applied to all models, while for type II and III ANOVA, F test is performed for |
exact |
A logical variable to indicate whether or not exact no. of permutations will be used (applicable only to free the permutation case). The default is FALSE. |
data |
In some cases, you need to provide the data set used in model fitting, especially when you have applied some variable trnasformation in the model. |
fo |
A model formula used in the |
prt |
A logical variable to indicate whether or not to print output on the screen. The default is TRUE. |
ncore |
Number of core for parallel computing, the default value is 3. |
seed |
Specify a random number generator seed, for reproducible results. |
Value
The function produces permutation t-test table for coefficients of (fixed) effects, permutation ANOVA table for model terms and a model parameter list permlist
, a list containing nsim=4999
times permutation refitted model
parameters which are used in functions predictmeans
and contrastmeans
.
Author(s)
Dongwen Luo, Siva Ganesh and John Koolaard
Examples
## Not run for simplifying process of submiting pkg to CRAN
#library(predictmeans)
#Oats$nitro <- factor(Oats$nitro)
#fm <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
## library(lme4)
## fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
#
## Permutation Test for model terms
#system.time(
# permlme <- permmodels(model=fm, nperm=999)
#)
#
## Permutation Test for multiple comparisons
#predictmeans(model=fm, modelterm="nitro:Variety", atvar="Variety", adj="BH",
# permlist=permlme, plot=FALSE)
#
## Permutation Test for specified contrasts
#cm <- rbind(c(-1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
# c(0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0))
#contrastmeans(model=fm, modelterm="nitro:Variety", ctrmatrix=cm, permlist=permlme)