permlmer {predictmeans} | R Documentation |
Permutation Test of random or fixed effects for lmer
model.
Description
This function provides permutation tests for the terms in a linear mixed model of lmer
.
Usage
permlmer(lmer0, lmer1, nperm = 999, ncore=3, plot=FALSE, seed)
Arguments
lmer0 |
|
lmer1 |
|
nperm |
Number of permutation, the default value is 999. |
ncore |
Number of core for parallel computing, the default value is 3. |
plot |
Plot permutation distribution or not, the default value is FALSE. |
seed |
Specify a random number generator seed, for reproducible results. |
Value
Permutation p-value.
Author(s)
Dongwen Luo, Siva Ganesh and John Koolaard
References
Oliver E. Lee and Thomas M. Braun (2012), Permutation Tests for Random Effects in Linear Mixed Models. Biometrics, Journal 68(2).
Examples
# library(predictmeans)
## Test random effects
# fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
# fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy)
# fm3 <- update(fm1, . ~ . - (Days | Subject) + (1 | Subject))
# anova(fm1, fm2, fm3)
# permlmer(fm3, fm2)
# permlmer(fm2, fm1)
## Test fixed effects
# Oats$nitro <- factor(Oats$nitro)
# fm0 <- lmer(yield ~ nitro+Variety+(1|Block/Variety), data=Oats)
# fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
# permlmer(fm0, fm)
[Package predictmeans version 1.1.0 Index]