create_profiles_cluster {prcr} | R Documentation |
Create profiles of observed variables using two-step cluster analysis
Description
Create profiles of observed variables using two-step cluster analysis
Usage
create_profiles_cluster(
df,
...,
n_profiles,
to_center = FALSE,
to_scale = FALSE,
distance_metric = "squared_euclidean",
linkage = "complete"
)
Arguments
df |
with two or more columns with continuous variables |
... |
unquoted variable names separated by commas |
n_profiles |
The specified number of profiles to be found for the clustering solution |
to_center |
Boolean (TRUE or FALSE) for whether to center the raw data with M = 0 |
to_scale |
Boolean (TRUE or FALSE) for whether to scale the raw data with SD = 1 |
distance_metric |
Distance metric to use for hierarchical clustering; "squared_euclidean" is default but more options are available (see ?hclust) |
linkage |
Linkage method to use for hierarchical clustering; "complete" is default but more options are available (see ?dist) |
Details
Function to create a specified number of profiles of observed variables using a two-step (hierarchical and k-means) cluster analysis.
Value
A list containing the prepared data, the output from the hierarchical and k-means cluster analysis, the r-squared value, raw clustered data, processed clustered data of cluster centroids, and a ggplot object.
Examples
d <- pisaUSA15
m3 <- create_profiles_cluster(d,
broad_interest, enjoyment, instrumental_mot, self_efficacy,
n_profiles = 3)
summary(m3)