sumalt {pracma} | R Documentation |
Alternating Series Acceleration
Description
Computes the value of an (infinite) alternating sum applying an acceleration method found by Cohen et al.
Usage
sumalt(f_alt, n)
Arguments
f_alt |
a funktion of |
n |
number of elements of the series used for calculating. |
Details
Computes the sum of an alternating series (whose entries are strictly decreasing), applying the acceleration method developped by H. Cohen, F. Rodriguez Villegas, and Don Zagier.
For example, to compute the Leibniz series (see below) to 15 digits
exactly, 10^15
summands of the series will be needed. This
accelleration approach here will only need about 20 of them!
Value
Returns an approximation of the series value.
Author(s)
Implemented by Hans W Borchers.
References
Henri Cohen, F. Rodriguez Villegas, and Don Zagier. Convergence Acceleration of Alternating Series. Experimental Mathematics, Vol. 9 (2000).
See Also
Examples
# Beispiel: Leibniz-Reihe 1 - 1/3 + 1/5 - 1/7 +- ...
a_pi4 <- function(k) (-1)^k / (2*k + 1)
sumalt(a_pi4, 20) # 0.7853981633974484 = pi/4 + eps()
# Beispiel: Van Wijngaarden transform needs 60 terms
n <- 60; N <- 0:n
a <- cumsum((-1)^N / (2*N+1))
for (i in 1:n) {
a <- (a[1:(n-i+1)] + a[2:(n-i+2)]) / 2
}
a - pi/4 # 0.7853981633974483
# Beispiel: 1 - 1/2^2 + 1/3^2 - 1/4^2 +- ...
b_alt <- function(k) (-1)^k / (k+1)^2
sumalt(b_alt, 20) # 0.8224670334241133 = pi^2/12 + eps()
## Not run:
# Dirichlet eta() function: eta(s) = 1/1^s - 1/2^s + 1/3^s -+ ...
eta_ <- function(s) {
eta_alt <- function(k) (-1)^k / (k+1)^s
sumalt(eta_alt, 30)
}
eta_(1) # 0.6931471805599453 = log(2)
abs(eta_(1+1i) - eta(1+1i)) # 1.24e-16
## End(Not run)