odregress {pracma} | R Documentation |
Orthogonal Distance Regression
Description
Orthogonal Distance Regression (ODR, a.k.a. total least squares) is a regression technique in which observational errors on both dependent and independent variables are taken into account.
Usage
odregress(x, y)
Arguments
x |
matrix of independent variables. |
y |
vector representing dependent variable. |
Details
The implementation used here is applying PCA resp. the singular value decomposition on the matrix of independent and dependent variables.
Value
Returns list with components coeff
linear coefficients and intercept
term, ssq
sum of squares of orthogonal distances to the linear line
or hyperplane, err
the orthogonal distances, fitted
the
fitted values, resid
the residuals, and normal
the normal
vector to the hyperplane.
Note
The “geometric mean" regression not implemented because questionable.
References
Golub, G.H., and C.F. Van Loan (1980). An analysis of the total least
squares problem.
Numerical Analysis, Vol. 17, pp. 883-893.
See ODRPACK or ODRPACK95 (TOMS Algorithm 676).
URL: https://docs.scipy.org/doc/external/odr_ams.pdf
See Also
Examples
# Example in one dimension
x <- c(1.0, 0.6, 1.2, 1.4, 0.2)
y <- c(0.5, 0.3, 0.7, 1.0, 0.2)
odr <- odregress(x, y)
( cc <- odr$coeff )
# [1] 0.65145762 -0.03328271
lm(y ~ x)
# Coefficients:
# (Intercept) x
# -0.01379 0.62931
# Prediction
xnew <- seq(0, 1.5, by = 0.25)
( ynew <- cbind(xnew, 1) %*% cc )
## Not run:
plot(x, y, xlim=c(0, 1.5), ylim=c(0, 1.2), main="Orthogonal Regression")
abline(lm(y ~ x), col="blue")
lines(c(0, 1.5), cc[1]*c(0, 1.5) + cc[2], col="red")
points(xnew, ynew, col = "red")
grid()
## End(Not run)
# Example in two dimensions
x <- cbind(c(0.92, 0.89, 0.85, 0.05, 0.62, 0.55, 0.02, 0.73, 0.77, 0.57),
c(0.66, 0.47, 0.40, 0.23, 0.17, 0.09, 0.92, 0.06, 0.09, 0.60))
y <- x %*% c(0.5, 1.5) + 1
odr <- odregress(x, y); odr
# $coeff
# [1] 0.5 1.5 1.0
# $ssq
# [1] 1.473336e-31
y <- y + rep(c(0.1, -0.1), 5)
odr <- odregress(x, y); odr
# $coeff
# [1] 0.5921823 1.6750269 0.8803822
# $ssq
# [1] 0.02168174
lm(y ~ x)
# Coefficients:
# (Intercept) x1 x2
# 0.9153 0.5671 1.6209