| mod, rem {pracma} | R Documentation |
Integer Division
Description
Integer division functions and remainders
Usage
mod(n, m)
rem(n, m)
idivide(n, m, rounding = c("fix", "floor", "ceil", "round"))
Arguments
n |
numeric vector (preferably of integers) |
m |
must be a scalar integer (positive, zero, or negative) |
rounding |
rounding mode. |
Details
mod(n, m) is the modulo operator and returns n\,mod\,m.
mod(n, 0) is n, and the result always has the same sign
as m.
rem(n, m) is the same modulo operator and returns n\,mod\,m.
mod(n, 0) is NaN, and the result always has the same sign
as n.
idivide(n, m) is integer division, with the same effect as
n %/% m or using an optional rounding mode.
Value
a numeric (integer) value or vector/matrix.
Note
The following relation is fulfilled (for m != 0):
mod(n, m) = n - m * floor(n/m)
See Also
Binary R operators %/% and %%.
Examples
mod(c(-5:5), 5)
rem(c(-5:5), 5)
idivide(c(-2, 2), 3, "fix") # 0 0
idivide(c(-2, 2), 3, "floor") # -1 0
idivide(c(-2, 2), 3, "ceil") # 0 1
idivide(c(-2, 2), 3, "round") # -1 1
[Package pracma version 2.4.4 Index]