invlap {pracma} | R Documentation |
Inverse Laplacian
Description
Numerical inversion of Laplace transforms.
Usage
invlap(Fs, t1, t2, nnt, a = 6, ns = 20, nd = 19)
Arguments
Fs |
function representing the function to be inverse-transformed. |
t1 , t2 |
end points of the interval. |
nnt |
number of grid points between t1 and t2. |
a |
shift parameter; it is recommended to preserve value 6. |
ns , nd |
further parameters, increasing them leads to lower error. |
Details
The transform Fs may be any reasonable function of a variable s^a, where a
is a real exponent. Thus, the function invlap
can solve fractional
problems and invert functions Fs containing (ir)rational or transcendental
expressions.
Value
Returns a list with components x
the x-coordinates and y
the y-coordinates representing the original function in the interval
[t1,t2]
.
Note
Based on a presentation in the first reference. The function invlap
on MatlabCentral (by ) served as guide. The Talbot procedure from the
second reference could be an interesting alternative.
References
J. Valsa and L. Brancik (1998). Approximate Formulae for Numerical Inversion of Laplace Transforms. Intern. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 11, (1998), pp. 153-166.
L.N.Trefethen, J.A.C.Weideman, and T.Schmelzer (2006). Talbot quadratures and rational approximations. BIT. Numerical Mathematics, 46(3):653–670.
Examples
Fs <- function(s) 1/(s^2 + 1) # sine function
Li <- invlap(Fs, 0, 2*pi, 100)
## Not run:
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) tanh(s)/s # step function
L1 <- invlap(Fs, 0.01, 20, 1000)
plot(L1[[1]], L1[[2]], type = "l", col = "blue")
L2 <- invlap(Fs, 0.01, 20, 2000, 6, 280, 59)
lines(L2[[1]], L2[[2]], col="darkred"); grid()
Fs <- function(s) 1/(sqrt(s)*s)
L1 <- invlap(Fs, 0.01, 5, 200, 6, 40, 20)
plot(L1[[1]], L1[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) 1/(s^2 - 1) # hyperbolic sine function
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) 1/s/(s + 1) # exponential approach
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
gamma <- 0.577215664901532 # Euler-Mascheroni constant
Fs <- function(s) -1/s * (log(s)+gamma) # natural logarithm
Li <- invlap(Fs, 0, 2*pi, 100)
plot(Li[[1]], Li[[2]], type = "l", col = "blue"); grid()
Fs <- function(s) (20.5+3.7343*s^1.15)/(21.5+3.7343*s^1.15+0.8*s^2.2+0.5*s^0.9)/s
L1 <- invlap(Fs, 0.01, 5, 200, 6, 40, 20)
plot(L1[[1]], L1[[2]], type = "l", col = "blue")
grid()
## End(Not run)