| erf {pracma} | R Documentation |
Error Functions and Inverses (Matlab Style)
Description
The error or Phi function is a variant of the cumulative normal (or Gaussian) distribution.
Usage
erf(x)
erfinv(y)
erfc(x)
erfcinv(y)
erfcx(x)
erfz(z)
erfi(z)
Arguments
x, y |
vector of real numbers. |
z |
real or complex number; must be a scalar. |
Details
erf and erfinv are the error and inverse error functions.
erfc and erfcinv are the complementary error function and
its inverse.
erfcx is the scaled complementary error function.
erfz is the complex, erfi the imaginary error function.
Value
Real or complex number(s), the value(s) of the function.
Note
For the complex error function we used Fortran code from the book S. Zhang & J. Jin “Computation of Special Functions” (Wiley, 1996).
Author(s)
First version by Hans W Borchers;
vectorized version of erfz by Michael Lachmann.
See Also
Examples
x <- 1.0
erf(x); 2*pnorm(sqrt(2)*x) - 1
# [1] 0.842700792949715
# [1] 0.842700792949715
erfc(x); 1 - erf(x); 2*pnorm(-sqrt(2)*x)
# [1] 0.157299207050285
# [1] 0.157299207050285
# [1] 0.157299207050285
erfz(x)
# [1] 0.842700792949715
erfi(x)
# [1] 1.650425758797543
[Package pracma version 2.4.4 Index]