clenshaw_curtis {pracma} | R Documentation |
Clenshaw-Curtis Quadrature Formula
Description
Clenshaw-Curtis Quadrature Formula
Usage
clenshaw_curtis(f, a = -1, b = 1, n = 1024, ...)
Arguments
f |
function, the integrand, without singularities. |
a , b |
lower and upper limit of the integral; must be finite. |
n |
Number of Chebyshev nodes to account for. |
... |
Additional parameters to be passed to the function |
Details
Clenshaw-Curtis quadrature is based on sampling the integrand on Chebyshev points, an operation that can be implemented using the Fast Fourier Transform.
Value
Numerical scalar, the value of the integral.
References
Trefethen, L. N. (2008). Is Gauss Quadrature Better Than Clenshaw-Curtis? SIAM Review, Vol. 50, No. 1, pp 67–87.
See Also
Examples
## Quadrature with Chebyshev nodes and weights
f <- function(x) sin(x+cos(10*exp(x))/3)
## Not run: ezplot(f, -1, 1, fill = TRUE)
cc <- clenshaw_curtis(f, n = 64) #=> 0.0325036517151 , true error > 1.3e-10
[Package pracma version 2.4.4 Index]